Abstract

We report the implementation of a tunable, narrow-spectral-bandwidth, pulsed, four-pass dye-laser amplifier with strongly reduced amplified spontaneous emission. We present temporal pulse profiles, pulse spectra, and gain measurements of the amplifier output for the case of Coumarin 307 dye as the gain medium, seeded at wavelengths of 508  nm and pumped at 355   nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
    [CrossRef]
  2. H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
    [CrossRef]
  3. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
    [CrossRef]
  4. I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
    [CrossRef]
  5. T. W. Hänsch and H. Walther, "Laser spectroscopy and quantum optics," Rev. Mod. Phys. 71, S242-S252 (1999).
    [CrossRef]
  6. E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
    [CrossRef]
  7. E. S. Lee and J. W. Hahn, "Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser," Opt. Lett. 21, 1836-1838 (1996).
    [CrossRef] [PubMed]
  8. D. S. Bethune, "Dye cell design for high-power low-divergence excimer-pumped dye lasers," Appl. Opt. 20, 1897-1899 (1981).
    [CrossRef] [PubMed]
  9. J. W. Hahn and Y. S. Yoo, "Suppression of amplified spontaneous emission from a four-pass dye laser amplifier," Appl. Opt. 37, 4867-4870 (1998).
    [CrossRef]
  10. F. J. Duarte, "Technology of pulsed dye lasers," in Dye Laser Principles, F.J.Duarte and L.W.Hillman, eds. (Academic, 1990), pp. 239-285.
  11. F. J. Duarte, J. J. Ehrlich, W. E. Davenport, and T. S. Taylor, "Flashlamp pumped narrow-linewidth dispersive dye laser oscillators: very low amplified spontaneous emission levels and reduction of linewidth instabilities," Appl. Opt. 29, 3176-3179 (1990).
    [CrossRef] [PubMed]
  12. J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995), pp. 282-296.
  13. U. Brackmann, Lambdachrome Laser Dyes (Lambda Physik, 1997).
  14. W. T. Silfvast, Laser Fundamentals (Cambridge U. Press, 2004), pp. 539-545.
  15. J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).
  16. K.-H. Weber and C. J. Sansonetti, "Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium," Phys. Rev. A 35, 4650-4660 (1987).
    [CrossRef] [PubMed]
  17. P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
    [CrossRef]

2006

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

1999

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

T. W. Hänsch and H. Walther, "Laser spectroscopy and quantum optics," Rev. Mod. Phys. 71, S242-S252 (1999).
[CrossRef]

1998

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

J. W. Hahn and Y. S. Yoo, "Suppression of amplified spontaneous emission from a four-pass dye laser amplifier," Appl. Opt. 37, 4867-4870 (1998).
[CrossRef]

1996

H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
[CrossRef]

E. S. Lee and J. W. Hahn, "Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser," Opt. Lett. 21, 1836-1838 (1996).
[CrossRef] [PubMed]

1990

1989

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

1987

K.-H. Weber and C. J. Sansonetti, "Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium," Phys. Rev. A 35, 4650-4660 (1987).
[CrossRef] [PubMed]

1982

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

1981

Akulin, V. M.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Bagnato, V. S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

Bethune, D. S.

Brackmann, U.

U. Brackmann, Lambdachrome Laser Dyes (Lambda Physik, 1997).

Comparat, D.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Cromwell, E.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

Davenport, W. E.

de Tomasi, F.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Duarte, F. J.

Ehrlich, J. J.

Fioretti, A.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Gould, P. L.

H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
[CrossRef]

Goy, P.

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

Hahn, J. W.

Hänsch, T. W.

T. W. Hänsch and H. Walther, "Laser spectroscopy and quantum optics," Rev. Mod. Phys. 71, S242-S252 (1999).
[CrossRef]

Haroche, S.

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

Jones, K. M.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

Julienne, P. S.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

Kung, A. H.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

Lee, E. S.

Lee, Y. T.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

Lett, P. D.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

Mourachko, I.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Nosbaum, P.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Overstreet, K. R.

J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).

Pillet, P.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Raimond, J. M.

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

Sansonetti, C. J.

K.-H. Weber and C. J. Sansonetti, "Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium," Phys. Rev. A 35, 4650-4660 (1987).
[CrossRef] [PubMed]

Schwettmann, A.

J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).

Shaffer, J. P.

J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).

Silfvast, W. T.

W. T. Silfvast, Laser Fundamentals (Cambridge U. Press, 2004), pp. 539-545.

Stwalley, W. C.

H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
[CrossRef]

Tallant, J.

J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).

Taylor, T. S.

Tiesinga, E.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

Trickl, T.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995), pp. 282-296.

Vitrant, G.

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

Walther, H.

T. W. Hänsch and H. Walther, "Laser spectroscopy and quantum optics," Rev. Mod. Phys. 71, S242-S252 (1999).
[CrossRef]

Wang, H.

H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
[CrossRef]

Weber, K.-H.

K.-H. Weber and C. J. Sansonetti, "Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium," Phys. Rev. A 35, 4650-4660 (1987).
[CrossRef] [PubMed]

Weiner, J.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

Yoo, Y. S.

Zilio, S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

Appl. Opt.

Opt. Lett.

Phys. Rev. A

K.-H. Weber and C. J. Sansonetti, "Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium," Phys. Rev. A 35, 4650-4660 (1987).
[CrossRef] [PubMed]

P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, "Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements," Phys. Rev. A 26, 2733-2742 (1982).
[CrossRef]

Phys. Rev. Lett.

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, "Many-body effects in a frozen Rydberg gas," Phys. Rev. Lett. 80, 253-256 (1998).
[CrossRef]

Rev. Mod. Phys.

T. W. Hänsch and H. Walther, "Laser spectroscopy and quantum optics," Rev. Mod. Phys. 71, S242-S252 (1999).
[CrossRef]

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483-535 (2006).
[CrossRef]

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999).
[CrossRef]

Rev. Sci. Instrum.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, "Ultranarrow bandwidth VUV-XUV laser system," Rev. Sci. Instrum. 60, 2888-2892 (1989).
[CrossRef]

Z. Phys. D

H. Wang, P. L. Gould, and W. C. Stwalley, "Photoassociative spectroscopy of pure long-range molecules," Z. Phys. D 36, 317-323 (1996).
[CrossRef]

Other

F. J. Duarte, "Technology of pulsed dye lasers," in Dye Laser Principles, F.J.Duarte and L.W.Hillman, eds. (Academic, 1990), pp. 239-285.

J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995), pp. 282-296.

U. Brackmann, Lambdachrome Laser Dyes (Lambda Physik, 1997).

W. T. Silfvast, Laser Fundamentals (Cambridge U. Press, 2004), pp. 539-545.

J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, "Sub-Doppler magneto-optical trap temperatures measured using Rydberg tagging," Phys. Rev. A 74, 023410 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Four-pass amplifier setup, following Ref. [7]. PBS, polarizing beam-splitter cube; FR, Faraday rotator; PR, Fresnel rhomb; G, grating.

Fig. 2
Fig. 2

Reduction of ASE due to grating: Spectrum of (a) amplifier output when replacing the grating G with a mirror, (b) amplifier output with grating G in setup. The insets show (a) the output spectrum with no grating and no seed and (b) detail of a long-time integrated spectrum using 532   nm seed light, showing the residual ASE component around the laser line.

Fig. 3
Fig. 3

Typical single-shot 355   nm Nd:YAG pump pulse (first pulse) and corresponding amplifier output pulse (second pulse). Intensity versus time profiles for λ=508  nm . The FWHMs are also indicated.

Fig. 4
Fig. 4

Gain g versus wavelength λ. Error bars are standard deviations. Vertical error bars result from the combination of shot-to-shot noise in the output pulse energy and the fluctuation of input power. Horizontal error bars result from the limited resolution of the photospectrometer.

Fig. 5
Fig. 5

Output energy per pulse (triangles, right vertical axis) and seed input power (squares, left vertical axis) versus λ. Error bars are due to shot-to-shot noise and input power fluctuations.

Fig. 6
Fig. 6

Amplifier gain versus 355 nm Nd:YAG pump energy per pulse at fixed seed wavelength λ=508  nm and fixed Pin=47.4±2.0  mW .

Fig. 7
Fig. 7

Amplifier output energy per pulse versus input seed laser power at λ=508  nm and a constant 355   nm pump energy of 37.5±0.7  mJ . Vertical error bars are due to observed shot-to-shot fluctuations of output energy. Horizontal error bars are due to fluctuations in the input beam power.

Fig. 8
Fig. 8

High-resolution spectrum of amplifier output pulse and Gaussian fit. The bandwidth (FWHM) is indicated. The data are the average of six separate sweeps over the narrow (5   MHz) Cs 6P3/289S transition line in 1  MHz steps. The transition was excited in our MOT setup by the amplified, divergent laser pulse. Atoms were then pulse-field ionized and detected at each frequency step. The averaging over six sweeps results in a standard deviation for the bandwidth of 18   MHz .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G=eσC307ΔNL,
G(λ)=EoutEin=EoutPinΔtamp.

Metrics