## Abstract

The latest in a series of solar occultation satellite instruments, Stratospheric Aerosol and Gas Experiment (SAGE) III, was placed into orbit in December 2001, and data were obtained until March 2006. Measurements were made of the extinction attributable to aerosols and cloud at a number of wavelengths between 290 and $1550\text{\hspace{0.17em} nm}$. The analysis of data obtained by its predecessor, SAGE II, has shown that an intercomparison of such data at two or more wavelengths may be used to separate the effects of cloud and aerosol. This analysis has been done on a routine basis for many years using SAGE II data at 525 and $1020\text{\hspace{0.17em} nm}$ and applied extensively to global studies of tropospheric cloud and aerosol. Here we describe the aerosol–cloud separation algorithm developed for use with the SAGE III data, which uses the extinction at 525, 1020, and $1550\text{\hspace{0.17em} nm}$. This algorithm is now being used to produce vertical profiles of cloud presence as a standard SAGE III data product. These profiles have a vertical resolution of 0.5 km and cover the altitude range from 6.0 to 30.0 km, and data are presently available from March 2002 onward. An outline is given of the development of this algorithm, the nature of the SAGE III data, and the algorithm performance. To maintain continuity with SAGE II cloud data, the relative performances of the SAGE II and SAGE III algorithms are also examined. An example of the application of the algorithm to SAGE III tropospheric data is shown and discussed.

© 2007 Optical Society of America

Full Article | PDF Article