Abstract

A study of silver, chromium, stainless-steel, and indium thin films prepared by subnanosecond laser deposition in vacuum is reported. We compare the laser ablation in vacuum at the weak- and tight-focusing conditions of a Ti:sapphire laser beam and analyze the nanoparticles synthesized in the latter case using absorption spectroscopy, x-ray fluorescence, atomic force microscopy, and scanning electron microscopy. Our results show that the nanoparticle formation can be accomplished using long laser pulses under tight-focusing conditions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
    [CrossRef]
  2. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
    [CrossRef]
  3. I. Ryasnyansky, B. Palpant, S. Debrus, R. A. Ganeev, A. L. Stepanov, N. Can, C. Buchal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in the pico- and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
    [CrossRef] [PubMed]
  4. M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
    [CrossRef]
  5. S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
    [CrossRef]
  6. Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
    [CrossRef]
  7. K.-L. Tsai and J. L. Dye, "Nanoscale metal particles by homogeneous reduction with alkalides or electrides," J. Am. Chem. Soc. 113, 1650-1652 (1991).
    [CrossRef]
  8. Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
    [CrossRef]
  9. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
    [CrossRef]
  10. R. A. Ganeev and A. I. Ryasnyansky, "Influence of laser ablation parameters on optical and nonlinear optical characteristics of semiconductor solutions," Opt. Commun. 246, 163-171 (2005).
    [CrossRef]
  11. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
    [CrossRef]
  12. S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).
  13. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
    [CrossRef]
  14. M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
    [CrossRef]
  15. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
    [CrossRef]
  16. T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
    [CrossRef] [PubMed]
  17. M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
    [CrossRef]
  18. M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
    [CrossRef] [PubMed]
  19. D. K. G. de Boer, "Glancing-incidence x-ray fluorescence of layered materials," Phys. Rev. B 44, 498-511 (1991).
    [CrossRef]
  20. M. K. Tiwari, Calculation of Grazing Incidence X-ray Fluorescence Intensities from Layer Samples, RRCAT Internal Report (2006).
  21. R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
    [CrossRef]
  22. T. E. Glove, "Hydrodynamics of particle formation following femtosecond laser ablation," J. Opt. Soc. Am. B 20, 125-131 (2003).
    [CrossRef]
  23. H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
    [CrossRef] [PubMed]
  24. D. Perez and L. J. Lewis, "Molecular-dynamics study of ablation of solids under femtosecond laser pulses," Phys. Rev. B 67, 184102 (2003).
    [CrossRef]
  25. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
    [CrossRef]
  26. K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
    [CrossRef]
  27. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
    [CrossRef]

2005

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev and A. I. Ryasnyansky, "Influence of laser ablation parameters on optical and nonlinear optical characteristics of semiconductor solutions," Opt. Commun. 246, 163-171 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

I. Ryasnyansky, B. Palpant, S. Debrus, R. A. Ganeev, A. L. Stepanov, N. Can, C. Buchal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in the pico- and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
[CrossRef] [PubMed]

2004

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

2003

Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
[CrossRef]

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

D. Perez and L. J. Lewis, "Molecular-dynamics study of ablation of solids under femtosecond laser pulses," Phys. Rev. B 67, 184102 (2003).
[CrossRef]

T. E. Glove, "Hydrodynamics of particle formation following femtosecond laser ablation," J. Opt. Soc. Am. B 20, 125-131 (2003).
[CrossRef]

2002

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

2001

H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
[CrossRef] [PubMed]

2000

K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
[CrossRef]

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

1999

Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
[CrossRef]

1998

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

1996

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

1991

K.-L. Tsai and J. L. Dye, "Nanoscale metal particles by homogeneous reduction with alkalides or electrides," J. Am. Chem. Soc. 113, 1650-1652 (1991).
[CrossRef]

D. K. G. de Boer, "Glancing-incidence x-ray fluorescence of layered materials," Phys. Rev. B 44, 498-511 (1991).
[CrossRef]

1989

M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
[CrossRef] [PubMed]

Alessio, L. D.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Alves, E.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

Amoruso, S.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).

Ausanio, G.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Battaglin, G.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Bedzyk, M. J.

M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
[CrossRef] [PubMed]

Bennemann, K. H.

H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
[CrossRef] [PubMed]

Bommarito, G. M.

M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
[CrossRef] [PubMed]

Bruzzese, R.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Buchal, C.

Can, N.

Cattaruza, E.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Chen, Q.

Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
[CrossRef]

da Silva, R. C.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

Dang, H.

Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
[CrossRef]

de Boer, D. K. G.

D. K. G. de Boer, "Glancing-incidence x-ray fluorescence of layered materials," Phys. Rev. B 44, 498-511 (1991).
[CrossRef]

Debrus, S.

I. Ryasnyansky, B. Palpant, S. Debrus, R. A. Ganeev, A. L. Stepanov, N. Can, C. Buchal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in the pico- and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
[CrossRef] [PubMed]

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Ditmire, T.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

Donnelly, T. D.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

Dye, J. L.

K.-L. Tsai and J. L. Dye, "Nanoscale metal particles by homogeneous reduction with alkalides or electrides," J. Am. Chem. Soc. 113, 1650-1652 (1991).
[CrossRef]

Fahler, S.

K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
[CrossRef]

Falcone, R. W.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

Falconieri, M.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Ferdeghini, C.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Ferro, D.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Furuya, K.

Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
[CrossRef]

Ganeev, R. A.

I. Ryasnyansky, B. Palpant, S. Debrus, R. A. Ganeev, A. L. Stepanov, N. Can, C. Buchal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in the pico- and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
[CrossRef] [PubMed]

R. A. Ganeev and A. I. Ryasnyansky, "Influence of laser ablation parameters on optical and nonlinear optical characteristics of semiconductor solutions," Opt. Commun. 246, 163-171 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

Garsia, M. E.

H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
[CrossRef] [PubMed]

Glove, T. E.

Gonella, F.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Gowrishankar, B.

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

Imas, Y. A.

S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).

Jeschke, H. O.

H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
[CrossRef] [PubMed]

Khodyko, Y. V.

S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).

Krebs, H. U.

K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
[CrossRef]

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Lafait, J.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

Lewis, L. J.

D. Perez and L. J. Lewis, "Molecular-dynamics study of ablation of solids under femtosecond laser pulses," Phys. Rev. B 67, 184102 (2003).
[CrossRef]

Marques, C.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

Mattei, G.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

May, M.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Mazzoldi, P.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Nandedkar, R. V.

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

Neuman, K.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

Palpant, B.

Perez, D.

D. Perez and L. J. Lewis, "Molecular-dynamics study of ablation of solids under femtosecond laser pulses," Phys. Rev. B 67, 184102 (2003).
[CrossRef]

Perry, M. D.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

Pinçon, N.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Piovesan, M.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Polloni, R.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Prot, D.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Raghuvanshi, V. K.

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

Romanov, G. S.

S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).

Ryasnyanskiy, A. I.

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev and A. I. Ryasnyansky, "Influence of laser ablation parameters on optical and nonlinear optical characteristics of semiconductor solutions," Opt. Commun. 246, 163-171 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

Ryasnyansky, I.

Salvetti, G.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

Sankar, B. Gowri

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

Santagata, A.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Sawhney, K. J. S.

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

Schildkraut, J. S.

M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
[CrossRef] [PubMed]

Sella, C.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Sordelet, D. J.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Stepanov, A. L.

I. Ryasnyansky, B. Palpant, S. Debrus, R. A. Ganeev, A. L. Stepanov, N. Can, C. Buchal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in the pico- and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
[CrossRef] [PubMed]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

Sturm, K.

K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
[CrossRef]

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

Tanaka, M.

Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
[CrossRef]

Teghil, R.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Tiwari, M. K.

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

M. K. Tiwari, Calculation of Grazing Incidence X-ray Fluorescence Intensities from Layer Samples, RRCAT Internal Report (2006).

Tsai, K.-L.

K.-L. Tsai and J. L. Dye, "Nanoscale metal particles by homogeneous reduction with alkalides or electrides," J. Am. Chem. Soc. 113, 1650-1652 (1991).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

Uysal, S.

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Venturini, J.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Vitiello, M.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

Wang, X.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

Zaccagnino, M.

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Zhang, Z.

Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
[CrossRef]

Zhao, Y.

Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions," Appl. Phys. B 80, 595-601 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, "Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica," Appl. Phys. Lett. 73, 288-290 (1998).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, and C. Ferdeghini, "Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas," Appl. Phys. Lett. 80, 4315-4317 (2002).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, "Generation of silicon nanoparticles via femtosecond laser ablation in vacuum," Appl. Phys. Lett. 84, 4502-4504 (2004).
[CrossRef]

Appl. Surf. Sci.

K. Sturm, S. Fahler, and H. U. Krebs, "Pulsed laser deposition of metals in low pressure inert gas," Appl. Surf. Sci. 154-155, 462-466 (2000).
[CrossRef]

R. Teghil, L. D. Alessio, A. Santagata, M. Zaccagnino, D. Ferro, and D. J. Sordelet, "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals," Appl. Surf. Sci. 210, 307-317 (2003).
[CrossRef]

Bull. Mater. Sci.

M. K. Tiwari, B. Gowrishankar, V. K. Raghuvanshi, R. V. Nandedkar, and K. J. S. Sawhney, "Development of a total reflection x-ray fluorescence spectrometer for ultra-trace element analysis," Bull. Mater. Sci. 25, 435-441 (2002).
[CrossRef]

J. Am. Chem. Soc.

K.-L. Tsai and J. L. Dye, "Nanoscale metal particles by homogeneous reduction with alkalides or electrides," J. Am. Chem. Soc. 113, 1650-1652 (1991).
[CrossRef]

J. Appl. Phys.

S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

Y. Zhao, Z. Zhang, and H. Dang, "A novel solution route for preparing indium nanoparticles," J. Phys. Chem. B 107, 7574-7576 (2003).
[CrossRef]

Opt. Commun.

R. A. Ganeev and A. I. Ryasnyansky, "Influence of laser ablation parameters on optical and nonlinear optical characteristics of semiconductor solutions," Opt. Commun. 246, 163-171 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, "Application of RZ-scan technique for investigation of nonlinear optical characteristics of sapphire doped with Ag, Cu, and Au nanoparticles," Opt. Commun. 253, 205-213 (2005).
[CrossRef]

Opt. Quantum Electron.

R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, "Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm," Opt. Quantum Electron. 36, 949-960 (2004).
[CrossRef]

Phys. Rev. B

D. Perez and L. J. Lewis, "Molecular-dynamics study of ablation of solids under femtosecond laser pulses," Phys. Rev. B 67, 184102 (2003).
[CrossRef]

D. K. G. de Boer, "Glancing-incidence x-ray fluorescence of layered materials," Phys. Rev. B 44, 498-511 (1991).
[CrossRef]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Phys. Rev. Lett.

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, "High-order harmonic generation in atom clusters," Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, "X-ray standing waves at a reflecting mirror surface," Phys. Rev. Lett. 62, 1376-1379 (1989).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garsia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87, 015003 (2001).
[CrossRef] [PubMed]

Phys. Status Solidi B

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, "Saturated absorption and reverse saturated absorption of Cu:SuO2 at lambda = 532 nm," Phys. Status Solidi B 241, R1-R4 (2004).
[CrossRef]

Spectrochim. Acta Part B

M. K. Tiwari, K. J. S. Sawhney, B. Gowri Sankar, V. K. Raghuvanshi, and R. V. Nandedkar, "A simple and precise TXRF spectrometer: construction and its applications," Spectrochim. Acta Part B 59, 1141-1147 (2004).
[CrossRef]

Surf. Sci.

Q. Chen, M. Tanaka, and K. Furuya, "Unusual crystallographic structure and its fluctuation of indium nanoparticles as deposited and observed with HRTEM using UHV-DC-TEM system," Surf. Sci. 440, 398-406 (1999).
[CrossRef]

Other

S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodyko, High Power Radiation Effect in Metals (Nauka, 1970).

M. K. Tiwari, Calculation of Grazing Incidence X-ray Fluorescence Intensities from Layer Samples, RRCAT Internal Report (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra (curves 1–3) of the Ag films deposited at different tight-focusing conditions and the absorption spectrum of Ag nanoparticles (curve 4) implanted inside the silica glass plate by ion bombardment.

Fig. 2
Fig. 2

Recorded x-ray fluorescence profile for an In deposition prepared by ablation at weak-focusing conditions. The profile shows that the In is deposited in the form of a continuous monoatomic film instead of nanoparticles. The solid curve shows a fitted profile. The critical angle of In is 0.36° for 8.50  keV x-ray energy.

Fig. 3
Fig. 3

Recorded x-ray fluorescence profile of Ag nanoparticles prepared by the laser ablation in vacuum and deposited on a float glass substrate. The dots show experimental data, while the solid curve shows a fitted profile.

Fig. 4
Fig. 4

SEM images of the chromium, stainless steel, and Ag nanoparticles deposited on silicon wafer as substrate. These images were obtained at (a) weak-focusing (chromium deposition), (b) tight-focusing (stainless-steel deposition), and (c) tight-focusing (Ag deposition) conditions. (Note the different magnifications are used). The average size of the spherical clusters in all three cases was measured to be 60 nm.

Fig. 5
Fig. 5

SEM images of the Ag nanoparticles deposited on a Cu substrate at (a) weak-focusing conditions and (b) tight-focusing conditions.

Fig. 6
Fig. 6

AFM image of (a) the Ag nanoparticles deposited on a Cu strip in tight-focusing conditions and (b) the Ag nanoparticles deposited on an aluminium strip in weak-focusing conditions. Very few nanoparticles are seen in the case of (b) weak-focusing conditions compared to the case of (a) tight-focusing conditions.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

100  fs
1   ps
λ=793  nm
τ=300  ps
E=30  mJ
10  Hz
2×1012  W  cm2
(4×1010  W  cm2)
50  mm
(1×104  mbars)
480  nm
490  nm
60  nm
8  nm
(415  nm)
×5
8.5  keV
250  eV
5.9  keV
60  nm
30  nm
100  nm
60  nm
60  nm
>180kHz
5.5N/m
65  nm
1012
1013  W  cm2
(1014  W  cm2)
60  nm
0.36°
8.50  keV

Metrics