Abstract

We demonstrate theoretically and experimentally a band filter with two reflection and broadband transmission ranges, which was obtained with standard two-material technology. The fabricated filter has transmission and reflectivity characteristics better than those achievable with rugate technology.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Southwell and R. L. Hall, "Rugate filter sidelobe suppression using quintic and rugated quintic matching layers," Appl. Opt. 28, 2949-2951 (1989).
  2. W. H. Southwell, "Using apodization functions to reduce sidelobes in rugate filters," Appl. Opt. 28, 5091-5094 (1989).
  3. J. A. Dobrowolski and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transform," Appl. Opt. 17, 3039-3050 (1978).
  4. B. G. Bovard, "Rugate filter design: the modified Fourier transform technique," Appl. Opt. 29, 24-30 (1990).
  5. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (IOP, 2001).
  6. M. Lappschies, B. Görtz, and D. Ristau, "Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering," Appl. Opt. 45, 1502-1506 (2006).
    [CrossRef]
  7. C. Lee, C. Tang, and J. Wu, "Rugate filter made with composite thin films by ion-beam sputtering," Appl. Opt. 45, 1333-1337 (2006).
    [CrossRef]
  8. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Appl. Opt. 45, 1515-1524 (2006).
    [CrossRef]
  9. V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).
  10. A. V. Tikhonravov, "Some theoretical aspects of thin film optics and their applications," Appl. Opt. 32, 5417-5436 (1993).
  11. A. V. Tikhonravov, "Mathematical aspects of the synthesis of inhomogeneous coating," in Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, Proc. SPIE 2046, 18-29 (1993).
  12. A. V. Tikhonravov and M. K. Trubetskov, "Design of multilayers featuring inhomogeneous coating properties," in Developments in Optical Component Coatings, Proc. SPIE 2776, 48-57 (1996).
  13. V. Pervak, "Spectral properties of interference filters, based on three-material period," Opt. J. 70, 91-96 (2003).
  14. V. Pervak and L. V. Poperenko, "Feature of fabrication of broad-band interference filters," J. Opt. Technol. 72, 940-943 (2005).
  15. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).
  16. Optilayer software, www.optilayer.com.
  17. A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).
  18. V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

2006 (3)

2005 (2)

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

V. Pervak and L. V. Poperenko, "Feature of fabrication of broad-band interference filters," J. Opt. Technol. 72, 940-943 (2005).

2003 (2)

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

V. Pervak, "Spectral properties of interference filters, based on three-material period," Opt. J. 70, 91-96 (2003).

1996 (1)

A. V. Tikhonravov and M. K. Trubetskov, "Design of multilayers featuring inhomogeneous coating properties," in Developments in Optical Component Coatings, Proc. SPIE 2776, 48-57 (1996).

1993 (2)

A. V. Tikhonravov, "Some theoretical aspects of thin film optics and their applications," Appl. Opt. 32, 5417-5436 (1993).

A. V. Tikhonravov, "Mathematical aspects of the synthesis of inhomogeneous coating," in Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, Proc. SPIE 2046, 18-29 (1993).

1990 (1)

1989 (2)

1978 (1)

Amotchkina, A. V.

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

Amotchkina, T. V.

Apolonski, A.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Bovard, B. G.

Dobrowolski, J. A.

Gäbler, D.

Görtz, B.

Hall, R. L.

Kaiser, N.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Appl. Opt. 45, 1515-1524 (2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

Krausz, F.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Lappschies, M.

Lee, C.

Lowe, D.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (IOP, 2001).

Naumov, S.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Pervak, V.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

V. Pervak and L. V. Poperenko, "Feature of fabrication of broad-band interference filters," J. Opt. Technol. 72, 940-943 (2005).

V. Pervak, "Spectral properties of interference filters, based on three-material period," Opt. J. 70, 91-96 (2003).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Poperenko, L. V.

Ristau, D.

Southwell, W. H.

Stenzel, O.

Tang, C.

Tempea, G.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Appl. Opt. 45, 1515-1524 (2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

A. V. Tikhonravov and M. K. Trubetskov, "Design of multilayers featuring inhomogeneous coating properties," in Developments in Optical Component Coatings, Proc. SPIE 2776, 48-57 (1996).

A. V. Tikhonravov, "Some theoretical aspects of thin film optics and their applications," Appl. Opt. 32, 5417-5436 (1993).

A. V. Tikhonravov, "Mathematical aspects of the synthesis of inhomogeneous coating," in Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, Proc. SPIE 2046, 18-29 (1993).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Appl. Opt. 45, 1515-1524 (2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

A. V. Tikhonravov and M. K. Trubetskov, "Design of multilayers featuring inhomogeneous coating properties," in Developments in Optical Component Coatings, Proc. SPIE 2776, 48-57 (1996).

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

Wilbrandt, S.

Wu, J.

Yakovlev, V.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

Appl. Opt. (8)

Appl. Phys. B (1)

V. Pervak, S. Naumov, A. V. Tikhonravov, M. K. Trubetskov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B (to be published).

J. Opt. Technol. (1)

Opt. J. (1)

V. Pervak, "Spectral properties of interference filters, based on three-material period," Opt. J. 70, 91-96 (2003).

Proc. SPIE (1)

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," in Advances in Optical Thin Films II, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5963, P-1-P-10 (2005).

Other (6)

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (IOP, 2001).

A. V. Tikhonravov, "Mathematical aspects of the synthesis of inhomogeneous coating," in Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, Proc. SPIE 2046, 18-29 (1993).

A. V. Tikhonravov and M. K. Trubetskov, "Design of multilayers featuring inhomogeneous coating properties," in Developments in Optical Component Coatings, Proc. SPIE 2776, 48-57 (1996).

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).

Optilayer software, www.optilayer.com.

A. V. Tikhonravov, M. K. Trubetskov, A. V. Amotchkina, and M. A. Kokarev, "Key role of the coating total optical thickness in solving design problems," in Advances in Optical Thin Films Proc. SPIE 5250, 312-321 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) Designed spectrum of the band filter for the RT (plus sign) and S2MT (curve) technologies. The calculations include only one surface of a BK7 substrate.

Fig. 2
Fig. 2

Refractive index structures of the (a) RT (left) and (b) S2MT (right) filters. QWOT, quarter-wavelength optical thickness. The central wavelength is 2170  nm .

Fig. 3
Fig. 3

(Color online) Design (curve) and measurement (circles) of the S2MT filter. The measurement and calculation include the backside of a BK7 substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F=1Lj=1L(Rp(λj)R(j)ΔR(j))2,

Metrics