Abstract

Use of photonic crystal fibers (PCFs) in the field of sensing is relatively new. We propose the application of a PCF for pressure sensing. The fiber analyzed is a polarization-maintaining PCF that has negligible sensitivity to temperature, making it an ideal candidate for pressure sensing in harsh environments. On the basis of theoretical and experimental analysis, PCF is proposed to be applied as a temperature-compensated pressure sensor. Detailed theoretical analysis and the experiment carried out are described to show the concept of the sensor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
    [CrossRef]
  2. W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.
  3. W. J. Bock and W. Urbanczyk, "Measurements of sensitivity of birefringent holey fiber to temperature elongation and hydrostatic pressure," in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference 2004 (IEEE, 2004), pp. 1228-1232.
  4. K. Suzuki, H. Kubota, and S. Kawanishi, "Optical properties of a low loss polarization maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  5. W. J. Bock, N. S. Nawrocka, and W. Urbakezyk, "Highly sensitive fiber optics sensor for dynamic pressure measurements," IEEE Trans. Instrum. Meas. 50, 1085-1088 (2001).
    [CrossRef]
  6. W. J. Bock, W. Urbakezyk, R. Buczynski, and A. W. Domanski, "Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers," Appl. Opt. 33, 6078-6083 (1994).
    [CrossRef] [PubMed]
  7. Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
    [CrossRef]
  8. W. J. Bock and W. Urbakezyk, "Temperature desensitization of a fiber optic pressure sensor by simultaneous measurement of pressure and temperature," Appl. Opt. 37, 3897-3901 (1998).
    [CrossRef]
  9. R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.
  10. T. Wolinski, in Progress in Optics XL, E. Wolf, ed. (North-Holland, 2000).
  11. T. Ritari, H. Ludnigsen, M. Wegmuller, M. Legre, N. Gisin, J. C. Folkenberg, and H. D. Nielsen, "Experimental study of polarization properties of highly birefringent photonic crystal fiber," Opt. Express 12, 5931-5939 (2004).
    [CrossRef] [PubMed]
  12. T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.
  13. D. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]
  14. C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
    [CrossRef]
  15. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
    [CrossRef]
  16. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of low-loss polarization maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  17. M. Szpulak, T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt. 43, 4739-4744 (2004).
    [CrossRef] [PubMed]
  18. J. Chen and W. J. Bock, "A novel fiber optic pressure sensor operated at 1300-nm wavelength," IEEE Trans. Instrum. Meas. 53, 10-14 (2004).
    [CrossRef]
  19. D. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]

2006 (1)

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

2005 (1)

Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
[CrossRef]

2004 (7)

2003 (2)

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

2001 (3)

1998 (1)

1994 (1)

Antkoniak, M.

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

Antkowiak, M.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

Berghmans, F.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

Berghmansa, F.

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

Bergmans, F.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

Bock, W. J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

J. Chen and W. J. Bock, "A novel fiber optic pressure sensor operated at 1300-nm wavelength," IEEE Trans. Instrum. Meas. 53, 10-14 (2004).
[CrossRef]

W. J. Bock, N. S. Nawrocka, and W. Urbakezyk, "Highly sensitive fiber optics sensor for dynamic pressure measurements," IEEE Trans. Instrum. Meas. 50, 1085-1088 (2001).
[CrossRef]

W. J. Bock and W. Urbakezyk, "Temperature desensitization of a fiber optic pressure sensor by simultaneous measurement of pressure and temperature," Appl. Opt. 37, 3897-3901 (1998).
[CrossRef]

W. J. Bock, W. Urbakezyk, R. Buczynski, and A. W. Domanski, "Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers," Appl. Opt. 33, 6078-6083 (1994).
[CrossRef] [PubMed]

W. J. Bock and W. Urbanczyk, "Measurements of sensitivity of birefringent holey fiber to temperature elongation and hydrostatic pressure," in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference 2004 (IEEE, 2004), pp. 1228-1232.

Buczynski, R.

Chen, J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

J. Chen and W. J. Bock, "A novel fiber optic pressure sensor operated at 1300-nm wavelength," IEEE Trans. Instrum. Meas. 53, 10-14 (2004).
[CrossRef]

Demokan, M. S.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

Domanski, A. W.

Eftimov, T.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

Fernanadez, A.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

Folkenberg, J. C.

Fujita, M.

Gisin, N.

Jin, W.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

Kang, J. U.

Kawanishi, S.

Kim, D.

Kotynski, R.

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

Kubota, H.

Legre, M.

Lesiak, P.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

Lu, C.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

Ludnigsen, H.

Martynkien, T.

M. Szpulak, T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt. 43, 4739-4744 (2004).
[CrossRef] [PubMed]

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

Nasilowski, T.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

Nasilwoski, T.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

Nawrocka, N. S.

W. J. Bock, N. S. Nawrocka, and W. Urbakezyk, "Highly sensitive fiber optics sensor for dynamic pressure measurements," IEEE Trans. Instrum. Meas. 50, 1085-1088 (2001).
[CrossRef]

Nielsen, H. D.

Nosilawski, T.

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

Olszewski, J.

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

Ritari, T.

Statkiewlcz, G.

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

Suzuki, K.

Szpulak, M.

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

M. Szpulak, T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt. 43, 4739-4744 (2004).
[CrossRef] [PubMed]

Tanaka, M.

Thienpart, H.

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

Thienpont, H.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

Urbakezyk, W.

Urbanczyk, W.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

M. Szpulak, T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt. 43, 4739-4744 (2004).
[CrossRef] [PubMed]

W. J. Bock and W. Urbanczyk, "Measurements of sensitivity of birefringent holey fiber to temperature elongation and hydrostatic pressure," in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference 2004 (IEEE, 2004), pp. 1228-1232.

Wegmuller, M.

Wolinski, T.

T. Wolinski, in Progress in Optics XL, E. Wolf, ed. (North-Holland, 2000).

Yang, J.

Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
[CrossRef]

Yang, X.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

Zhao, C.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

Zhao, M.

Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Tech. Lett. (1)

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Tech. Lett. 16, 2535-2537 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (3)

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 1119-1123 (2006).
[CrossRef]

J. Chen and W. J. Bock, "A novel fiber optic pressure sensor operated at 1300-nm wavelength," IEEE Trans. Instrum. Meas. 53, 10-14 (2004).
[CrossRef]

W. J. Bock, N. S. Nawrocka, and W. Urbakezyk, "Highly sensitive fiber optics sensor for dynamic pressure measurements," IEEE Trans. Instrum. Meas. 50, 1085-1088 (2001).
[CrossRef]

Opt. Eng. (1)

Y. Zhao, M. Zhao, and J. Yang, "Self-compensated high pressure sensor with high-birefringence fiber Bragg-grating and a bulk modulus," Opt. Eng. 44, 014401-1-014401-4 (2005).
[CrossRef]

Opt. Express (5)

Other (6)

R. Kotynski, T. Nosilawski, M. Antkoniak, F. Berghmansa, and H. Thienpart, "Sensitivity of holey fiber based sensors," in International Conference on Transparent Optical Networks 2003 (2003), pp. 340-343.

T. Wolinski, in Progress in Optics XL, E. Wolf, ed. (North-Holland, 2000).

T. Nasilwoski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernanadez, F. Bergmans, and H. Thienpart, "Birefringent photonic crystal fiber as a multi-parameter sensor," in Prosymposium IEEE/LEOS Belarus chapter (2003), pp. 29-32.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, "Sensitivity of holey fiber based sensors," in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (IEEE, 2003), pp. 340-343.
[CrossRef]

W. Urbanczyk, M. Szpulak, G. Statkiewlcz, T. Martynkien, and J. Olszewski, "Sensing capabilities of the birefringent holey fibers," in International Conference on Transparent Optical Networks 2004 (2004), pp. 91-94.

W. J. Bock and W. Urbanczyk, "Measurements of sensitivity of birefringent holey fiber to temperature elongation and hydrostatic pressure," in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference 2004 (IEEE, 2004), pp. 1228-1232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the proposed sensor.

Fig. 2
Fig. 2

Cross-sectional view of PM-1550-01 PM-PCF.

Fig. 3
Fig. 3

Output intensity variation with applied pressure for PCF.

Fig. 4
Fig. 4

Output intensity variation with applied pressure for PCF up to the linear range.

Fig. 5
Fig. 5

Variation of SOP with applied pressure for PCF.

Fig. 6
Fig. 6

(Color online) Variation of SOP with applied pressure for various fibers.

Fig. 7
Fig. 7

Output intensity versus pressure for T=0°C .

Fig. 8
Fig. 8

Experimental results obtained by Bock et al.[15]

Fig. 9
Fig. 9

Output intensity of the sensor as a function of applied pressure at T=14°C .

Fig. 10
Fig. 10

Experimental results of Bock et al.[15] at T=14°C .

Fig. 11
Fig. 11

Pressure characteristics of sensor developed.

Tables (1)

Tables Icon

Table 1 Polarimetric Sensitivities of Various HiBi Fibers

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Sout=TP·TL·Sin,
Sin=Iin[1cos   2θsin   2θ0]t,
Sout=[S0outS1outS2outS3out]t
δ=δ0+δP+δT,
δ0=(nsnf)2πLλ,δP=PKP2πLλ,
δT=TKT2πLλ,
KP=nsPnfP,KT=nsTnfT.
TL=[1000010000cos  δsin  δ00sin  δcos  δ].
                TP(α)=12[1cos  2αsin  2α0cos  2αcos22αsin  2α  cos  2α0sin  2αsin  2α  cos  2αsin22α00000]
TP(α+90°)=12[1cos  2αsin  2α0cos  2αcos22αsin  2α  cos  2α0sin  2αsin  2α  cos  2αsin22α00000].
D1,2=Iout=Iin2{1+cos[(nsnf)2πLλ+PKP2πLλ]}.
D1,2=Iout=Iin2(1±cos  δ).
SOP=D1D2D1+D2=cos  δ.

Metrics