Abstract

A theoretical analysis and comparison of the integration density are given for passive planar lightwave circuits based on three different kinds of nanophotonic waveguide, namely, photonic crystal waveguides, Si nanowire waveguides, and nanoslot waveguides. Two criteria for determining the integration density are used. One is the minimal decoupled separation between two parallel nanophotonic waveguides, and the other is the area occupied by a low-loss 90° turn. Some important functional components (such as Y branches and optical add–drop filters) are also chosen as basic elements to evaluate the integration density. It is shown that the integration densities of passive linear planar lightwave circuits based on these three kinds of nanophotonic waveguide are comparable.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  2. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  3. D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides," Electron. Lett. 42, 400-402 (2006).
    [CrossRef]
  4. L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
    [CrossRef]
  5. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  6. S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
    [CrossRef]
  7. D. Dai, Y. Shi, and S. He, "Characteristic analysis of nano silicon waveguides for planar lightwave circuits of high integration," Appl. Opt. 45, 4941-4946 (2006).
    [CrossRef] [PubMed]
  8. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
    [CrossRef]
  9. D. Dai and S. He, "Analysis of characteristics of bent rib waveguides," J. Opt. Soc. Am. A 21, 113-121 (2004).
    [CrossRef]
  10. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998).
    [CrossRef] [PubMed]
  11. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
    [CrossRef]
  12. S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
    [CrossRef]
  13. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
    [CrossRef]

2006 (3)

D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides," Electron. Lett. 42, 400-402 (2006).
[CrossRef]

S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
[CrossRef]

D. Dai, Y. Shi, and S. He, "Characteristic analysis of nano silicon waveguides for planar lightwave circuits of high integration," Appl. Opt. 45, 4941-4946 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

2004 (4)

L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
[CrossRef] [PubMed]

D. Dai and S. He, "Analysis of characteristics of bent rib waveguides," J. Opt. Soc. Am. A 21, 113-121 (2004).
[CrossRef]

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

2002 (2)

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

2001 (1)

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

1998 (1)

Almeida, V. R.

Anand, S.

L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
[CrossRef]

Baets, R.

Barrios, C. A.

Beckx, S.

Benisty, H.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Borel, P. I.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

Dai, D.

de Sterke, C. Martijn

S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
[CrossRef]

Dumon, P.

Fan, S. H.

Frandsen, L. H.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Harpøth, A.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Haus, H. A.

He, S.

Houdre, R.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Joannopoulos, J. D.

Karlsson, A.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Kristensen, M.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Lavrinenko, A.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Lipson, M.

Liu, L.

D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides," Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Luyssaert, B.

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Niemi, T.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Oesterle, U.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Oliver, S.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Qiu, M.

L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
[CrossRef]

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Rattier, M.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Shi, Y.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Smith, C. J. M.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

Steel, M. J.

S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
[CrossRef]

Taillaert, D.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Thorhauge, M.

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

Thylén, L.

L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
[CrossRef]

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Villeneuve, P. R.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Weisbuch, C.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Wiaux, V.

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides," Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Xu, Q.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
[CrossRef]

Chem. PhysChem (1)

L. Thylén, M. Qiu, and S. Anand, "Photonic crystals--a step towards integrated circuits for photonics," Chem. PhysChem 5, 1268-1283 (2004).
[CrossRef]

Electron. Lett. (1)

D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides," Electron. Lett. 42, 400-402 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Tomljenovic-Hanic, C. Martijnde Sterke, and M. J. Steel, "Packing density of conventional waveguides and photonic crystal waveguides," Opt. Commun. 259, 142-148 (2006).
[CrossRef]

Opt. Express (2)

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 235-248 (2004).
[CrossRef]

S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic configurations of two parallel nanophotonic waveguides: (a) PhC waveguides, (b) Si nanowire waveguides, (c) nanoslot waveguides.

Fig. 2
Fig. 2

(Color online) Dispersion curves a / λ k a / 2 π for a chosen ratio 2r.

Fig. 3
Fig. 3

(Color online) Y branch based on (a) PhC waveguides, (b) Si nanowire waveguides, (c) nanoslot waveguides.

Fig. 4
Fig. 4

(Color online) Cross talk for PhC waveguides as the separation s increases.

Fig. 5
Fig. 5

(Color online) For two parallel Si nanowire waveguides, (a) the cross talk as the core width varies, (b) decoupled separation for different core widths ( l 0 = 1   cm ) .

Fig. 6
Fig. 6

(Color online) For two parallel nanoslot waveguides when w s = 40   nm , (a) the cross talk as the core width varies, (b) the decoupled separation for different core widths ( l 0 = 1   cm ) .

Fig. 7
Fig. 7

(Color online) Turning loss calculated with a 2D FDTD as the period number i increases.

Fig. 8
Fig. 8

(Color online) Minimal bending radius R min for an allowed loss of 0.1   dB as the core width varies.

Fig. 9
Fig. 9

(Color online) Comparison between the sizes of Y branches based on Si nanowire waveguides and nanoslot waveguides.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

CT = 10 log 10 [ sin ( π 2 l 0 / L c ) ] 2 ,
A = ( 2 i b a ) 2 ,
A = R 2 ,
S = ( 2 i dc ) ( 2 i b ) a 2 = 4 i dc i b a 2 ,
S = ( 2 s dc ) L ,

Metrics