Abstract

The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low- capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40  ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  2. D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
    [CrossRef]
  3. S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002).
    [CrossRef]
  4. M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
    [PubMed]
  5. J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
    [CrossRef]
  6. S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
    [CrossRef]
  7. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
    [CrossRef]
  8. E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
    [CrossRef] [PubMed]
  9. D. Achilles, Ch. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, "Fiber-assisted detection with photon number resolution," Opt. Lett. 28, 2387-2389 (2003).
    [CrossRef] [PubMed]
  10. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
    [CrossRef]
  11. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
    [CrossRef]
  12. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
    [CrossRef]
  13. D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
    [CrossRef]
  14. M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
    [CrossRef]
  15. M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004).
    [CrossRef]
  16. M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
    [CrossRef]
  17. M. Fujiwara and M. Sasaki, "Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector," Opt. Lett. 31, 691-693 (2006).
    [CrossRef] [PubMed]
  18. R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
    [CrossRef]
  19. R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
    [CrossRef]
  20. M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005).
    [CrossRef] [PubMed]
  21. M. Akiba and M. Fujiwara, "Ultralow-noise near-infrared detection system with a Si p-i-n photodiode," Opt. Lett. 28, 1010-1012 (2003).
    [CrossRef] [PubMed]
  22. N. E. Israeloff, "Dielectric polarization noise through the glass transition," Phys. Rev. B 53, R11913-R11916 (1996).
    [CrossRef]
  23. M. Akiba, "1/f dielectric polarization noise in silicon p-n junctions," Appl. Phys. Lett. 71, 3236-3238 (1997).
    [CrossRef]
  24. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972).
    [CrossRef]
  25. D. N. B. Hall, R. S. Aikens, R. Joyce, and T. W. McCurnin, "Johnson noise limited operation of photovoltaic InSb detectors," Appl. Opt. 14, 450-453 (1975).
    [CrossRef] [PubMed]
  26. H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
    [CrossRef]
  27. When the avalanche process comes into play in a Si APD, the probability distribution usually deviates from a Gaussian shape, having a tail in the higher voltage side. Then standard deviation σ also includes the avalanche noise, and photon number discrimination based on the CIPD becomes impossible.

2006 (1)

2005 (4)

M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005).
[CrossRef] [PubMed]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
[CrossRef]

2004 (2)

M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004).
[CrossRef]

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

2003 (5)

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

M. Akiba and M. Fujiwara, "Ultralow-noise near-infrared detection system with a Si p-i-n photodiode," Opt. Lett. 28, 1010-1012 (2003).
[CrossRef] [PubMed]

D. Achilles, Ch. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, "Fiber-assisted detection with photon number resolution," Opt. Lett. 28, 2387-2389 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
[CrossRef]

S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002).
[CrossRef]

2001 (2)

K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
[CrossRef]

1999 (3)

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

1998 (1)

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

1997 (2)

M. Akiba, "1/f dielectric polarization noise in silicon p-n junctions," Appl. Phys. Lett. 71, 3236-3238 (1997).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

1996 (1)

N. E. Israeloff, "Dielectric polarization noise through the glass transition," Phys. Rev. B 53, R11913-R11916 (1996).
[CrossRef]

1975 (1)

1972 (1)

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972).
[CrossRef]

Achilles, D.

Aebi, V. W.

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Aikens, R. S.

Akiba, M.

M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005).
[CrossRef] [PubMed]

M. Akiba and M. Fujiwara, "Ultralow-noise near-infrared detection system with a Si p-i-n photodiode," Opt. Lett. 28, 1010-1012 (2003).
[CrossRef] [PubMed]

M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
[CrossRef]

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

M. Akiba, "1/f dielectric polarization noise in silicon p-n junctions," Appl. Phys. Lett. 71, 3236-3238 (1997).
[CrossRef]

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

Banaszek, K.

Bartlett, S. D.

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002).
[CrossRef]

Costello, K. A.

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Davis, G. A.

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Diamanti, E.

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

Edgecumbe, J. P.

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Fitch, M. J.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Franson, J. D.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Fujiwara, M.

M. Fujiwara and M. Sasaki, "Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector," Opt. Lett. 31, 691-693 (2006).
[CrossRef] [PubMed]

M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
[CrossRef]

M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005).
[CrossRef] [PubMed]

M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004).
[CrossRef]

M. Akiba and M. Fujiwara, "Ultralow-noise near-infrared detection system with a Si p-i-n photodiode," Opt. Lett. 28, 1010-1012 (2003).
[CrossRef] [PubMed]

M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
[CrossRef]

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

Gottesman, D.

D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
[CrossRef]

Hall, D. N. B.

Hogue, H.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

Inoue, K.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

Israeloff, N. E.

N. E. Israeloff, "Dielectric polarization noise through the glass transition," Phys. Rev. B 53, R11913-R11916 (1996).
[CrossRef]

Jacobs, B. C.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Joyce, R.

Kim, J.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

Kitaev, A.

D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
[CrossRef]

Knill, K.

K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

La Rue, R. A.

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Laflamme, R.

K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Lita, A. E.

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

Martinis, J. M.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Matsumoto, T.

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

McCurnin, T. W.

McIntyre, R. J.

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972).
[CrossRef]

Milburn, G. J.

K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Miller, A. J.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Mizuno, J.

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

Murakami, H.

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

Nam, S.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

Nam, S. W.

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Noda, M.

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

Oliver, W. D.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

Pittman, T. B.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Preskill, J.

D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
[CrossRef]

Pudvay, D.

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

Sanders, B. C.

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002).
[CrossRef]

Sasaki, M.

M. Fujiwara and M. Sasaki, "Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector," Opt. Lett. 31, 691-693 (2006).
[CrossRef] [PubMed]

M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
[CrossRef]

M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005).
[CrossRef] [PubMed]

M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004).
[CrossRef]

M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
[CrossRef]

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

Schwall, R. E.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

Sergienko, A. V.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Silberhorn, Ch.

Sliwa, C.

Takeuchi, S.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

Waks, E.

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

Wakui, K.

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

Walmsley, I. A.

Yamamoto, Y.

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Akiba, "1/f dielectric polarization noise in silicon p-n junctions," Appl. Phys. Lett. 71, 3236-3238 (1997).
[CrossRef]

J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002).
[CrossRef]

M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
[CrossRef]

IEEE Electron Devices Lett. (1)

R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005).
[CrossRef]

IEEE Trans. Electron Devices (3)

M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004).
[CrossRef]

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972).
[CrossRef]

R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998).
[CrossRef]

Nature (1)

K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (4)

D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001).
[CrossRef]

S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002).
[CrossRef]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005).
[CrossRef]

Phys. Rev. B (1)

N. E. Israeloff, "Dielectric polarization noise through the glass transition," Phys. Rev. B 53, R11913-R11916 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

Other (2)

M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47.
[PubMed]

When the avalanche process comes into play in a Si APD, the probability distribution usually deviates from a Gaussian shape, having a tail in the higher voltage side. Then standard deviation σ also includes the avalanche noise, and photon number discrimination based on the CIPD becomes impossible.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of our CIPD. Photons are received at a Si APD. The signals of the Si APD are read by using a CTIA that consists of a feedback capacitor, a silicon junction field-effect transistor (Si JFET), and an operation amplifier (Op Amp). To discharge the feedback capacitor, a reset circuit is used. The circuit enclosed by the dotted line is cooled with liquid nitrogen to reduce thermal noise.

Fig. 2
Fig. 2

Power spectral density of the output-noise voltage of our CIPD. The noise exhibited 1 / f characteristics up to approximately 30 Hz.

Fig. 3
Fig. 3

The output-voltage distribution of our CIPD without incident photons. The standard deviation of this distribution, that is, the readout noise is 3.0 electrons integrated over a duration of 40 ms. Electron number is converted from measured voltages based on the capacitance of the feedback capacitor C f = 0.058   pF .

Fig. 4
Fig. 4

Noise spectral densities for three kinds of configurations of our circuit. The solid curve, the broken curve, and the dotted curve correspond to the circuit with a Si APD and a Si p-i-n PD, without the Si APD, and without the Si APD and the Si p-i-n PD respectively.

Tables (1)

Tables Icon

Table 1 Example of Capacitances of Our Readout-Circuit Elements

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V o u t = q M n e C f ,
V n = I n Z f ,
= I n 1 2 π f C f ,
I n 2 = I s n 2 + I g n 2 ,
V g s n = 1 g s f V s n ,
I s n = 2 π f V g s n ( C i n + C f ) ,
I d 2 = 4 k B T ( 2 π f C ) ,
V d 2 = 4 k B T C 2 π f | C f | 2 .
I d 2 = α | C | f ,
C i n = C f ( v o u t v i n g s f 1 ) ,
Δ n n 1 / 3 ,
R = Δ FWHM M ,

Metrics