Abstract

We present what we believe to be a new application of scanning holographic microscopy to superresolution. Spatial resolution exceeding the Rayleigh limit of the objective is obtained by digital coherent addition of the reconstructions of several off-axis Fresnel holograms. Superresolution by holographic superposition and synthetic aperture has a long history, which is briefly reviewed. The method is demonstrated experimentally by combining three off-axis holograms of fluorescent beads showing a transverse resolution gain of nearly a factor of 2.

© 2007 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription