Abstract

Wereporton the development of a highly sensitive detection system for measuring atmospheric NO2 by means of a laser-induced fluorescence (LIF) technique at 473  nm using a diode-pumped Nd:YAG laser. A GaN-based laser diode emitting at 410  nm is also used as an alternative fluorescence-excitation source. For laboratory calibrations, standard NO2 gas is diluted with synthetic air and is introduced into a fluorescence-detection cell. The NO2 LIF signal is detected by a photomultiplier tube andprocessed by a photon-counting method. The minimum detectable limits of the NO2 instrument developed have been estimated to be 0.14 ppbv and 0.39 ppbv (parts per billion, 10−9, by volume) in 60 s integration time (signal-to-noise ratio of 2) for 473 and 410  nm excitation systems, respectively. Practical performance of the instrument has been demonstrated by the 24 hour continuous measurements of ambient NO2 in a suburban area.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
    [CrossRef]
  2. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
    [CrossRef]
  3. T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
    [CrossRef]
  4. M. Bode, I. Freitag, A. Tünnermann, and H. Welling, "Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region," Opt. Lett. 22, 1220-1222 (1997).
    [CrossRef] [PubMed]
  5. B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere (Academic, 2000).
  6. M. A. Carroll and A. M. Thompson, "NOx in the non-urban troposphere," in Progress and Problems in Atmospheric Chemistry, J. R. Barker, ed. (World Scientific, 1995), pp. 198-255.
    [CrossRef]
  7. J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
    [CrossRef]
  8. P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta. A 54, 197-236 (1998).
    [CrossRef]
  9. J. Reid, M. El-Sherbiny, B. K. Garside, and E. A. Ballik, "Sensitivity limits of a tunable diode-laser spectrometer with application to the detection of NO2 at the 100-ppt level," Appl. Opt. 19, 3349-3354 (1980).
    [CrossRef] [PubMed]
  10. W. Lenth and M. Gehrtz, "Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser," Appl. Phys. Lett. 47, 1263-1265 (1985).
    [CrossRef]
  11. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, "Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors," Appl. Opt. 34, 3240-3249 (1995).
    [CrossRef] [PubMed]
  12. L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
    [CrossRef]
  13. D. M. Sonnenfroh and M. G. Allen, "Ultrasensitive, visible tunable diode laser detection of NO2," Appl. Opt. 35, 4053-4058 (1996).
    [CrossRef] [PubMed]
  14. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm," Appl. Opt. 35, 4059-4064 (1996).
    [CrossRef] [PubMed]
  15. J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
    [CrossRef]
  16. J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
    [CrossRef] [PubMed]
  17. V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).
  18. M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
    [CrossRef]
  19. M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
    [CrossRef]
  20. R. Wada and A. J. Orr-Ewing, "Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air," Analyst 130, 1595-1600 (2005).
    [CrossRef] [PubMed]
  21. P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
    [CrossRef] [PubMed]
  22. H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
    [CrossRef]
  23. J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
    [CrossRef] [PubMed]
  24. V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
    [CrossRef]
  25. C. Fong and W. H. Brune, "A laser induced fluorescence instrument for measuring tropospheric NO2," Rev. Sci. Instrum. 68, 4253-4262 (1997).
    [CrossRef]
  26. J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
    [CrossRef] [PubMed]
  27. Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
    [CrossRef]
  28. J. Matsumoto and Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique," Atmos. Environ. 37, 4847-4851 (2003).
    [CrossRef]
  29. P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, "Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion," Appl. Opt. 41, 6950-6956 (2002).
    [CrossRef] [PubMed]
  30. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
    [CrossRef]
  31. J. Orphal, "A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible," J. Photochem. Photobiol. A 157, 185-209 (2003).
    [CrossRef]
  32. V. M. Donnelly and F. Kaufman, "Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy," J. Chem. Phys. 69, 1456-1460 (1978).
    [CrossRef]
  33. K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
    [CrossRef]
  34. V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
    [CrossRef]
  35. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
    [CrossRef]
  36. S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

2006 (2)

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

2005 (4)

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

R. Wada and A. J. Orr-Ewing, "Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air," Analyst 130, 1595-1600 (2005).
[CrossRef] [PubMed]

P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
[CrossRef] [PubMed]

2004 (1)

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

2003 (5)

J. Matsumoto and Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique," Atmos. Environ. 37, 4847-4851 (2003).
[CrossRef]

J. Orphal, "A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible," J. Photochem. Photobiol. A 157, 185-209 (2003).
[CrossRef]

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
[CrossRef]

2002 (3)

P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, "Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion," Appl. Opt. 41, 6950-6956 (2002).
[CrossRef] [PubMed]

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
[CrossRef]

2001 (1)

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

2000 (1)

J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
[CrossRef] [PubMed]

1998 (1)

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta. A 54, 197-236 (1998).
[CrossRef]

1997 (5)

T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[CrossRef]

M. Bode, I. Freitag, A. Tünnermann, and H. Welling, "Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region," Opt. Lett. 22, 1220-1222 (1997).
[CrossRef] [PubMed]

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

C. Fong and W. H. Brune, "A laser induced fluorescence instrument for measuring tropospheric NO2," Rev. Sci. Instrum. 68, 4253-4262 (1997).
[CrossRef]

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

1996 (2)

1995 (1)

1990 (1)

K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
[CrossRef]

1985 (1)

W. Lenth and M. Gehrtz, "Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser," Appl. Phys. Lett. 47, 1263-1265 (1985).
[CrossRef]

1980 (1)

1979 (1)

V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
[CrossRef]

1978 (1)

V. M. Donnelly and F. Kaufman, "Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy," J. Chem. Phys. 69, 1456-1460 (1978).
[CrossRef]

1962 (2)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Allen, M. G.

Atkinson, R.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Baer, D. S.

Bale, C. S. E.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Ball, S. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

Ballik, E. A.

Baulch, D. L.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Baumann, K.

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

Baynard, T.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Beames, J. M.

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

Bode, M.

Brown, S. S.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Brune, W. H.

C. Fong and W. H. Brune, "A laser induced fluorescence instrument for measuring tropospheric NO2," Rev. Sci. Instrum. 68, 4253-4262 (1997).
[CrossRef]

Burley, J. D.

K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
[CrossRef]

Burns, G.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Butler, T. J. A.

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

Canosa-Mas, C. E.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Carleer, M.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Carleton, K. L.

Carlson, R. O.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Carroll, M. A.

M. A. Carroll and A. M. Thompson, "NOx in the non-urban troposphere," in Progress and Problems in Atmospheric Chemistry, J. R. Barker, ed. (World Scientific, 1995), pp. 198-255.
[CrossRef]

Ciciora, S. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Cleary, P. A.

Cohen, R. C.

P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, "Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion," Appl. Opt. 41, 6950-6956 (2002).
[CrossRef] [PubMed]

J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
[CrossRef] [PubMed]

Colin, R.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Coquart, B.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Cox, R. A.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Crowley, J. N.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Davis, S. J.

Demerjian, K. L.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Dill, F. H.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Donnelly, V. M.

V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
[CrossRef]

V. M. Donnelly and F. Kaufman, "Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy," J. Chem. Phys. 69, 1456-1460 (1978).
[CrossRef]

Dubé, W. P.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Dumke, W. P.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Elks, J. M. F.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

El-Sherbiny, M.

Fally, S.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Fawcett, B. L.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

Fehsenfeld, F. C.

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

Fenner, G. E.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere (Academic, 2000).

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Fong, C.

C. Fong and W. H. Brune, "A laser induced fluorescence instrument for measuring tropospheric NO2," Rev. Sci. Instrum. 68, 4253-4262 (1997).
[CrossRef]

Fortin, T. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Freedman, A.

P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
[CrossRef] [PubMed]

Freitag, I.

Friedl, R. R.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Gagliardi, G.

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

Garside, B. K.

Gehrtz, M.

W. Lenth and M. Gehrtz, "Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser," Appl. Phys. Lett. 47, 1263-1265 (1985).
[CrossRef]

Gianfrani, L.

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

Golden, D. M.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Hall, R. N.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Hampson, R. F.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Hanson, R. K.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm," Appl. Opt. 35, 4059-4064 (1996).
[CrossRef] [PubMed]

Harder, J. W.

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

Heine, F.

T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[CrossRef]

Hermans, C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Herndon, S.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Herndon, S. C.

P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
[CrossRef] [PubMed]

Huber, G.

T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[CrossRef]

Huie, R. E.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Hynes, R. G.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Jeffries, J. B.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
[CrossRef]

Jenkin, M. E.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Jenourier, A.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Johnston, H. S.

K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
[CrossRef]

Jones, R. L.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

Kajii, Y.

J. Matsumoto and Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique," Atmos. Environ. 37, 4847-4851 (2003).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Kaufman, F.

V. M. Donnelly and F. Kaufman, "Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy," J. Chem. Phys. 69, 1456-1460 (1978).
[CrossRef]

Kausman, F.

V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
[CrossRef]

Kebabian, P. L.

P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
[CrossRef] [PubMed]

Keil, D. G.

V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
[CrossRef]

Keller-Rudek, H.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Kellner, T.

T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[CrossRef]

Kessler, W. J.

Kingsley, J. D.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Koike, M.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Kolb, C. E.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Kondo, Y.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Kono, M.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Kurylo, M. J.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Langridge, J. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

Lasher, G. J.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Lenth, W.

W. Lenth and M. Gehrtz, "Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser," Appl. Phys. Lett. 47, 1263-1265 (1985).
[CrossRef]

Lerner, B. M.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
[CrossRef]

Matsumi, Y.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Matsumoto, J.

J. Matsumoto and Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique," Atmos. Environ. 37, 4847-4851 (2003).
[CrossRef]

Mazurenka, M. I.

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

Mérienne, M.-F.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Mihalcea, R. M.

Molina, M. J.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Moortgat, G. K.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Murakami, S.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Nathan, M. I.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

Nelson, D. D.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Orkin, V. L.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Orphal, J.

J. Orphal, "A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible," J. Photochem. Photobiol. A 157, 185-209 (2003).
[CrossRef]

Orr-Ewing, A. J.

R. Wada and A. J. Orr-Ewing, "Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air," Analyst 130, 1595-1600 (2005).
[CrossRef] [PubMed]

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

Osthoff, H. D.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Otis, C. E.

Palombo, D. A.

Patten, K. O.

K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
[CrossRef]

Perfang, C.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Pesce, G.

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

Pettersson, A.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Peuriot, A. L.

V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
[CrossRef]

Pitts, J. N.

B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere (Academic, 2000).

Ravishankara, A. R.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Reid, J.

Rossi, M. J.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Ryerson, T. B.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

Sander, S. P.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Santiago, G.

V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
[CrossRef]

Sasso, A.

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

Shallcross, D. E.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

Shillings, A. J. L.

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

Shorter, J. H.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Slezak, V.

V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
[CrossRef]

Soltys, T. J.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Sonnenfroh, D. M.

Takahashi, K.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Thompson, A. M.

M. A. Carroll and A. M. Thompson, "NOx in the non-urban troposphere," in Progress and Problems in Atmospheric Chemistry, J. R. Barker, ed. (World Scientific, 1995), pp. 198-255.
[CrossRef]

Thornton, J. A.

J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
[CrossRef] [PubMed]

Troe, J.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Tünnermann, A.

Vandaele, A. C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

Vaughan, S.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Wada, R.

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

R. Wada and A. J. Orr-Ewing, "Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air," Analyst 130, 1595-1600 (2005).
[CrossRef] [PubMed]

Wayne, R. P.

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

Welling, H.

Werle, P.

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta. A 54, 197-236 (1998).
[CrossRef]

Williams, E. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

Wine, P. H.

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Wooldridge, P. J.

P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, "Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion," Appl. Opt. 41, 6950-6956 (2002).
[CrossRef] [PubMed]

J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
[CrossRef] [PubMed]

Wormhoudt, J.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Zahniser, M. S.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

Anal. Chem. (3)

P. L. Kebabian, S. C. Herndon, and A. Freedman, "Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy," Anal. Chem. 77, 724-728 (2005).
[CrossRef] [PubMed]

J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, "Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios," Anal. Chem. 72, 528-539 (2000).
[CrossRef] [PubMed]

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, and Y. Kondo, "High-sensitivity instrument for measuring atmospheric NO2," Anal. Chem. 73, 5485-5493 (2001).
[CrossRef]

Analyst (2)

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

R. Wada and A. J. Orr-Ewing, "Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air," Analyst 130, 1595-1600 (2005).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. (4)

V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Perfang, S. Vaughan, and R. P. Wayne, "Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode," Appl. Phys. B 76, 691-697 (2003).

L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, "High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser," Appl. Phys. B 64, 487-491 (1997).
[CrossRef]

T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[CrossRef]

M. I. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, "Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2," Appl. Phys. B 81, 135-141 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, "Stimulated emission of radiation from GaAs P-N junctions," Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

W. Lenth and M. Gehrtz, "Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser," Appl. Phys. Lett. 47, 1263-1265 (1985).
[CrossRef]

Atmos. Chem. Phys. (1)

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Volume I. Gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. 4, 1461-1738 (2004).
[CrossRef]

Atmos. Environ. (1)

J. Matsumoto and Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique," Atmos. Environ. 37, 4847-4851 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Shallcross, and A. J. Orr-Ewing, "410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2," Chem. Phys. Lett. 367, 1-9 (2003).
[CrossRef]

Environ. Sci. Technol. (1)

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, "Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle," Environ. Sci. Technol. 39, 7991-8000 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

V. M. Donnelly, D. G. Keil, and F. Kausman, "Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching," J. Chem. Phys. 71, 659-673 (1979).
[CrossRef]

V. M. Donnelly and F. Kaufman, "Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy," J. Chem. Phys. 69, 1456-1460 (1978).
[CrossRef]

J. Geophys. Res. (3)

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F.Mérienne, A. Jenourier, and B. Coquart, "High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects," J. Geophys. Res. 107, 4348, doi: 10.1029/2001JD000971 (2002).
[CrossRef]

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, "Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy," J. Geophys. Res. 111, D12305, doi: (2006).
[CrossRef]

J. W. Harder, E. J. Williams, K. Baumann, and F. C. Fehsenfeld, "Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 tropospheric OH photochemistry experiment," J. Geophys. Res. 102, 6227-6243 (1997).
[CrossRef]

J. Photochem. Photobiol. (1)

J. Orphal, "A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible," J. Photochem. Photobiol. A 157, 185-209 (2003).
[CrossRef]

J. Phys. Chem. (1)

K. O. Patten, Jr., J. D. Burley, and H. S. Johnston, "Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm," J. Phys. Chem. 94, 7960-7969 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, "High-sensitivity absorption diagnostic for NO2 using a blue diode laser," J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002).
[CrossRef]

Op. Lasers Eng. (1)

V. Slezak, G. Santiago, and A. L. Peuriot, "Photoacoustic detection of NO2 traces with CW and pulsed green lasers," Op. Lasers Eng. 40, 33-41 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GasAs junctions," Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Fong and W. H. Brune, "A laser induced fluorescence instrument for measuring tropospheric NO2," Rev. Sci. Instrum. 68, 4253-4262 (1997).
[CrossRef]

Spectrochim. Acta. (1)

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta. A 54, 197-236 (1998).
[CrossRef]

Other (3)

B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere (Academic, 2000).

M. A. Carroll and A. M. Thompson, "NOx in the non-urban troposphere," in Progress and Problems in Atmospheric Chemistry, J. R. Barker, ed. (World Scientific, 1995), pp. 198-255.
[CrossRef]

S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, H. Keller-Rudek, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, "Chemical kinetics and photochemical data for use in atmospheric studies", Eval. 15, JPL Publ. 06-2 (Jet Propulsion Laboratory, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the NO 2 instrument developed in this study: MFC, mass flow controller; PMT, photomultiplier tube; PD, photodiode; A∕D, analog∕digital; converter.

Fig. 2
Fig. 2

Timing chart for LIF measurements using the 473   nm laser. All the timings are described relatively to the timing of the laser pulse: (A) Laser pulse. (B) Schematic PMT output signal without using a dynode gating socket. Both the NO 2 fluorescence and background scattering are observed simultaneously. (C) High voltage is applied to the dynode gating socket for the switching at 700 ns after the laser pulse with a 6 μs duration. (D) Schematic PMT output signal using the dynode gating socket. (E) The photon counting gate is opened at 950 ns after the laser pulse with a 5.5 μ s duration.

Fig. 3
Fig. 3

Typical example of the fluorescence intensity measurements with our NO 2 instrument. A diode-pumped Nd:YAG laser emitting at 473   nm was used as a fluorescence-excitation light source. The sample NO 2 gas concentration is 62.1 ppbv, which is generated by dilution of the standard NO 2 gas with the synthetic air. Fluorescence intensity was measured while alternatively turning on and off the laser every 100 s. Then, NO 2 gas was reduced to zero to measure background signal intensity.

Fig. 4
Fig. 4

Fluorescence intensity versus the NO 2 concentration. The 473   nm laser was used as a fluorescence-excitation light source. The concentration range of NO 2 is 0–62.1 ppbv. The slope is calculated to be 7.6 ± 0.1 counts s−1 ppb−1. The error indicates the two standard deviations of the least-squares fit analysis of the data points.

Fig. 5
Fig. 5

Similar to Fig. 4, but the concentration range of NO 2 is 0–3.2 ppmv. The 473   nm laser was used as a fluorescence-excitation light source. The slope is calculated to be 7.8 ± 0.2 counts s−1 ppb−1, which is consistent with the slope of Fig. 4. The error indicates the two standard deviations of the least-squares fit analysis of the data points.

Fig. 6
Fig. 6

Instrumental sensitivity factors for the 473 nm laser system obtained by calibrations using the standard NO 2 gas during the 24 hour field measurement of NO 2 , on 8 September 2005. The uncertainties at each point have arisen from the least-squares fit analyses of the calibration plots.

Fig. 7
Fig. 7

Results of ambient measurements of NO 2 (top panel), O 3 (middle), and UV-A (bottom), for 24 hours on 8 September 2005. The NO2 mixing ratios were quantified by our NO2 instrument with the 473   nm laser, while the O 3 concentrations and the sunlight UV-A intensities were measured by commercially available instruments (see text).

Tables (1)

Tables Icon

Table 1 Specification of the NO2 LIF Instrument Developed in this Study

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

NO 2 + h ν ( < 398   nm ) NO + O ( 3 P ) .
[ NO 2 ] min = ( S / N ) C S bg t .
τ f = 1 k f = 1 k r + k q M [ M ] ,
S NO2 Φ f ( P cell / P ambient ) .
Φ f = k r k r + k q M [ M ] .

Metrics