Abstract

We present a novel configuration for a twisted-nematic liquid-crystal display (TN-LCD) that makes it operate as a controllable polarization rotator. We extend a previouslyreported polarization rotator configuration using a zero-twist LCD inserted between two quarter-wave plates. We first operate the TN-LCD in the polarization eigenvector configuration and show how this system can act as an equivalent voltage-controlled wave plate. Next we incorporate this wave plate into the optical rotator configuration. We show that the plane of polarization of the transmitted light can be rotated as a function of the phase introduced by the display. Finally, we create a 2D polarization mask where different areas of the TN-LCD form different polarization states. Experimental results are included.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gori, "Measuring Stokes parameters by means of polarization grating," Opt. Lett. 24, 584-586 (1999).
    [CrossRef]
  2. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Elliptical polarization encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001).
    [CrossRef]
  3. J. E. Ford, F. Yu, K. Urquhart, and Y. Fainman, "Polarization-selective computer generated holograms," Opt. Lett. 18, 456-458 (1993).
    [CrossRef] [PubMed]
  4. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, "Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures," Appl. Opt. 41, 96-100 (2002).
    [CrossRef] [PubMed]
  5. K. Sueda, K. Tsubakimoto, N. Miyanaga, and M. Nakatsuka, "Control of spatial polarization by use of a liquid crystal with an optically treated alignment layer and its application to beam apodization," Appl. Opt. 44, 3752-3758 (2005).
    [CrossRef] [PubMed]
  6. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
    [CrossRef]
  7. J. Tervo and J. Turunen, "Generation of vectorial propagation-invariant fields by polarization-grating axicons," Opt. Commun. 192, 13-18 (2001).
    [CrossRef]
  8. P. C. Mogensen and J. Gluckstad, "A phase-based optical encryption system with polarisation encoding," Opt. Commun. 173, 177-183 (2000).
    [CrossRef]
  9. S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
    [CrossRef]
  10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  11. Z. Bomzon, V. Kleiner, and E. Hasman, "Computer-generated space-variant polarization elements with subwavelength metal stripes," Opt. Lett. 26, 33-35 (2001).
    [CrossRef]
  12. M. Stadler and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
    [CrossRef]
  13. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
    [CrossRef]
  14. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, "Polarization beam splitters using polarization diffraction gratings," Opt. Lett. 26, 587-589 (2001).
    [CrossRef]
  15. C. R. Fernandez-Pousa, I. Moreno, J. A. Davis, and J. Adachi, "Polarizing diffraction-grating triplicators," Opt. Lett. 26, 1651-1653 (2001).
    [CrossRef]
  16. J. A. Davis, G. E. Evans, and I. Moreno, "Polarization-multiplexed diffractive optical elements with liquid-crystal displays," Appl. Opt. 44, 4049-4052 (2005).
    [CrossRef] [PubMed]
  17. J. A. Davis, I. Moreno, and P. Tsai, "Polarization eigenstates for twisted-nematic liquid-crystal displays," Appl. Opt. 37, 937-945 (1998).
    [CrossRef]
  18. I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal displays," Opt. Eng. 37, 3848-3052 (1998).
    [CrossRef]
  19. J. Nicolás and J. A. Davis, "Programmable wave plates using a twisted-nematic liquid-crystal display," Opt. Eng. 41, 3004-3005 (2002).
    [CrossRef]
  20. C. Ye, "Construction of an optical rotator using quarter-wave plates and an optical retarder," Opt. Eng. 34, 3031-3035 (1995).
    [CrossRef]

2005

2003

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
[CrossRef]

2002

2001

2000

1999

1998

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal displays," Opt. Eng. 37, 3848-3052 (1998).
[CrossRef]

J. A. Davis, I. Moreno, and P. Tsai, "Polarization eigenstates for twisted-nematic liquid-crystal displays," Appl. Opt. 37, 937-945 (1998).
[CrossRef]

1996

1995

C. Ye, "Construction of an optical rotator using quarter-wave plates and an optical retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

1993

1990

Adachi, J.

Allison, D. B.

I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal displays," Opt. Eng. 37, 3848-3052 (1998).
[CrossRef]

Bandyopadhyay, P.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
[CrossRef]

Bomzon, Z.

Cottrell, D. M.

Davis, J. A.

D'Nelly, K. G.

I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal displays," Opt. Eng. 37, 3848-3052 (1998).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
[CrossRef]

Eriksen, R. L.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Elliptical polarization encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001).
[CrossRef]

Evans, G. E.

Fainman, Y.

Fernandez-Pousa, C. R.

Ford, D. H.

Ford, J. E.

Ghosh, A.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
[CrossRef]

Gluckstad, J.

P. C. Mogensen and J. Gluckstad, "A phase-based optical encryption system with polarisation encoding," Opt. Commun. 173, 177-183 (2000).
[CrossRef]

Glückstad, J.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Elliptical polarization encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001).
[CrossRef]

Gori, F.

Hamamoto, T.

Hasman, E.

Ichioka, Y.

Kimura, W. D.

Kleiner, V.

Konishi, T.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
[CrossRef]

McNamara, D. E.

Miyanaga, N.

Mogensen, P. C.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Elliptical polarization encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001).
[CrossRef]

P. C. Mogensen and J. Gluckstad, "A phase-based optical encryption system with polarisation encoding," Opt. Commun. 173, 177-183 (2000).
[CrossRef]

Moreno, I.

Nakatsuka, M.

Nicolás, J.

J. Nicolás and J. A. Davis, "Programmable wave plates using a twisted-nematic liquid-crystal display," Opt. Eng. 41, 3004-3005 (2002).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
[CrossRef]

Sanyal, S.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
[CrossRef]

Schadt, M.

Sonehara, T.

Stadler, M.

Sueda, K.

Tervo, J.

J. Tervo and J. Turunen, "Generation of vectorial propagation-invariant fields by polarization-grating axicons," Opt. Commun. 192, 13-18 (2001).
[CrossRef]

Tidwell, S. C.

Toyota, H.

Tsai, P.

Tsubakimoto, K.

Turunen, J.

J. Tervo and J. Turunen, "Generation of vectorial propagation-invariant fields by polarization-grating axicons," Opt. Commun. 192, 13-18 (2001).
[CrossRef]

Urquhart, K.

Ye, C.

C. Ye, "Construction of an optical rotator using quarter-wave plates and an optical retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

Yotsuya, T.

Yu, F.

Yu, W.

Appl. Opt.

Opt. Commun.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Elliptical polarization encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001).
[CrossRef]

J. Tervo and J. Turunen, "Generation of vectorial propagation-invariant fields by polarization-grating axicons," Opt. Commun. 192, 13-18 (2001).
[CrossRef]

P. C. Mogensen and J. Gluckstad, "A phase-based optical encryption system with polarisation encoding," Opt. Commun. 173, 177-183 (2000).
[CrossRef]

Opt. Eng.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, "Vector wave imagery using a birefringent lens," Opt. Eng. 37, 592-599 (1998).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal displays," Opt. Eng. 37, 3848-3052 (1998).
[CrossRef]

J. Nicolás and J. A. Davis, "Programmable wave plates using a twisted-nematic liquid-crystal display," Opt. Eng. 41, 3004-3005 (2002).
[CrossRef]

C. Ye, "Construction of an optical rotator using quarter-wave plates and an optical retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901-1-4 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical rotator system consisting of two quarter-wave plates (QWP) and a variable wave plate (a zero-twist LCD) with principal axes as shown. Lines denote the directions for the principal axes of the wave plates. Rotation angle is equal to Γ / 2 , where Γ is the phase retardance introduced by the zero-twist LCD.

Fig. 2
Fig. 2

Schematic defining the generation of the (a) negative and (b) positive eigenvectors for the TN-LCD having a negative twist.

Fig. 3
Fig. 3

Schematic defining the optical rotator system using a TN-LCD. It reproduces the scheme in Fig. 1, but the orientations of the linear polarizers in Fig. 2 identify the equivalent slow and fast axes for the QWP 1 -TN-LCD-QWP 2 combination.

Fig. 4
Fig. 4

Intensity and phase modulation for (a) negative eigenvector and (b) positive eigenvector. (c) Retardance versus addressed gray level.

Fig. 5
Fig. 5

Incident linearly polarized light at + 45 ° to the input axis. (a) Transmitted intensity for analyzer polarizer angle at + 45 ° (gray dots) and 45 ° (white dots) to the output axis. (b) Retardance.

Fig. 6
Fig. 6

Experimental results showing the rotation of the plane of polarization (azimuthal angle) and the ellipticity as a function of retardance Γ on the TN-LCD.

Fig. 7
Fig. 7

Pattern used for experiment. Different gray levels correspond to different phase retardations as discussed in the text.

Fig. 8
Fig. 8

Intensity patterns with the analyzer polarizer oriented at a different angles θ with respect to the orientation of the output light for zero gray level.

Fig. 9
Fig. 9

Schematic showing the linear polarization states leaving the UMH-SDSU patterns and background (BG) (dashed arrows) and orientation of the final analyzer corresponding to the equivalent images in Fig. 8 (bold arrows).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R ( Γ / 2 ) = i   exp ( i Γ 2 ) [ cos ( Γ 2 ) sin ( Γ 2 ) sin ( Γ 2 ) cos ( Γ 2 ) ] .
M TN - LCD = exp ( i β ) R ( α ) M ( α , β ) .
M ( α , β ) = [ cos   γ i β γ  sin   γ α γ  sin   γ α γ  sin   γ cos   γ + i β γ  sin   γ ] ,
M ( α , β ) E μ ± = μ ± E μ ± = exp ( ± i γ ) E μ ± .
ϕ ± = β ( ± γ ) .
Γ = ϕ ϕ + = 2 γ .
T ( + 45 ° , 45 ° ) = sin 2 ( Γ / 2 ) ,
T ( + 45 ° , + 45 ° ) = cos 2 ( Γ / 2 ) .

Metrics