Abstract

We demonstrate a multifunctional optical technique for tracking the evolution of defects in live 605  nm LEDs. Photocurrent images, electroluminescence, and spectral reflectance maps are simultaneously acquired and utilized to evaluate LED performance at different injection currents. Free-carrier density profiles in the active region are constructed from photocurrent images that are generated via two-photon excitation (2PE) at 800  nm. A device defect is induced by electrical stress and ripples are observed in the density distribution by 2PE microscopy. The microscopic stress patterns are not revealed with linear excitation. We investigate the local thermal activity in the active region by measuring the spectral reflectance change with injection current. Spectral unmixing separates the electroluminescence and reflectance signals and high-resolution background-free thermal maps are derived to determine the device operational limits and possible connections between structural defect and thermal activity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  2. L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
    [CrossRef]
  3. D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
    [CrossRef]
  4. G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
    [CrossRef]
  5. G. Bautista, C. Blanca, S. Delica, B. Buenaobra, and C. Saloma, "Spectral microthermography for component discrimination and hot spot identification in integrated circuits," Opt. Express 14, 1021-1026 (2006).
    [CrossRef] [PubMed]
  6. S. Takasu, "Application of OBIC/OBIRCH/OBHIC (semiconductor failure analysis)," JEOL News, Electron Opt. Instrum. 36E, 60-63 (2001).
  7. V. Daria, J. Miranda, and C. Saloma, "High contrast semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy," Appl. Opt. 41, 4157-4160 (2002).
    [CrossRef] [PubMed]
  8. V. J. Cemine, B. Buenaobra, C. M. Blanca, and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
    [CrossRef] [PubMed]
  9. J. Miranda and C. Saloma, "Four-dimensional microscopy of defects in integrated circuits," Appl. Opt. 42, 6520-6524 (2003).
    [CrossRef] [PubMed]
  10. C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
    [CrossRef]
  11. C. Xu and W. Denk, "Two-photon optical beam-induced current imaging through the backside of integrated circuits," Appl. Phys. Lett. 71, 2578-2580 (1997).
    [CrossRef]
  12. F. Kao, M. Huang, Y. Wang, M. Lee, and C. Sun, "Two-photon optical beam-induced current imaging of indium gallium nitride blue light emitting diodes," Opt. Lett. 24, 1407-1409 (1999).
    [CrossRef]
  13. E. Ramsay and D. Reid, "Three-dimensional imaging of a silicon flip chip using the two-photon optical beam-induced current effect," Appl. Phys. Lett. 81, 7-9 (2002).
    [CrossRef]
  14. G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  15. W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
    [CrossRef] [PubMed]
  16. C. Xu and W. Denk, "Comparison of one- and two-photon optical beam-induced current imaging," J. Appl. Phys. 86, 2226-2231 (1999).
    [CrossRef]

2006

2005

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
[CrossRef]

2004

2003

J. Miranda and C. Saloma, "Four-dimensional microscopy of defects in integrated circuits," Appl. Opt. 42, 6520-6524 (2003).
[CrossRef] [PubMed]

D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
[CrossRef]

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

2002

V. Daria, J. Miranda, and C. Saloma, "High contrast semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy," Appl. Opt. 41, 4157-4160 (2002).
[CrossRef] [PubMed]

E. Ramsay and D. Reid, "Three-dimensional imaging of a silicon flip chip using the two-photon optical beam-induced current effect," Appl. Phys. Lett. 81, 7-9 (2002).
[CrossRef]

2001

S. Takasu, "Application of OBIC/OBIRCH/OBHIC (semiconductor failure analysis)," JEOL News, Electron Opt. Instrum. 36E, 60-63 (2001).

1999

1997

C. Xu and W. Denk, "Two-photon optical beam-induced current imaging through the backside of integrated circuits," Appl. Phys. Lett. 71, 2578-2580 (1997).
[CrossRef]

1990

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
[CrossRef] [PubMed]

Batista, J. A.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Bautista, G.

Bein, B. K.

D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
[CrossRef]

Blanca, C.

Blanca, C. M.

C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
[CrossRef]

V. J. Cemine, B. Buenaobra, C. M. Blanca, and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
[CrossRef] [PubMed]

Buenaobra, B.

Cemine, V. J.

C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
[CrossRef]

V. J. Cemine, B. Buenaobra, C. M. Blanca, and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
[CrossRef] [PubMed]

da Silva, E. C.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Daria, V.

de Freitas, L. R.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Delica, S.

Denk, W.

C. Xu and W. Denk, "Comparison of one- and two-photon optical beam-induced current imaging," J. Appl. Phys. 86, 2226-2231 (1999).
[CrossRef]

C. Xu and W. Denk, "Two-photon optical beam-induced current imaging through the backside of integrated circuits," Appl. Phys. Lett. 71, 2578-2580 (1997).
[CrossRef]

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
[CrossRef] [PubMed]

Dietzel, D.

D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
[CrossRef]

Eleutério Filho, S.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Filloy, C.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Fournier, D.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Gosch, G.

G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Holé, S.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Huang, M.

Jerosolimski, G.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Kao, F.

Lee, M.

Mansanares, A. M.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Miranda, J.

Pelzl, J.

D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
[CrossRef]

Pimentel, M. B. C.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

Ramsay, E.

E. Ramsay and D. Reid, "Three-dimensional imaging of a silicon flip chip using the two-photon optical beam-induced current effect," Appl. Phys. Lett. 81, 7-9 (2002).
[CrossRef]

Reid, D.

E. Ramsay and D. Reid, "Three-dimensional imaging of a silicon flip chip using the two-photon optical beam-induced current effect," Appl. Phys. Lett. 81, 7-9 (2002).
[CrossRef]

Saloma, C.

Sastine, V. M.

C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
[CrossRef]

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Strickler, J.

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
[CrossRef] [PubMed]

Sun, C.

Takasu, S.

S. Takasu, "Application of OBIC/OBIRCH/OBHIC (semiconductor failure analysis)," JEOL News, Electron Opt. Instrum. 36E, 60-63 (2001).

Tessier, G.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Wang, Y.

Webb, W.

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
[CrossRef] [PubMed]

Wilson, T.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Xu, C.

C. Xu and W. Denk, "Comparison of one- and two-photon optical beam-induced current imaging," J. Appl. Phys. 86, 2226-2231 (1999).
[CrossRef]

C. Xu and W. Denk, "Two-photon optical beam-induced current imaging through the backside of integrated circuits," Appl. Phys. Lett. 71, 2578-2580 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. Ramsay and D. Reid, "Three-dimensional imaging of a silicon flip chip using the two-photon optical beam-induced current effect," Appl. Phys. Lett. 81, 7-9 (2002).
[CrossRef]

C. M. Blanca, V. J. Cemine, V. M. Sastine, and C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy," Appl. Phys. Lett. 87, 231104-(1-3) (2005).
[CrossRef]

C. Xu and W. Denk, "Two-photon optical beam-induced current imaging through the backside of integrated circuits," Appl. Phys. Lett. 71, 2578-2580 (1997).
[CrossRef]

J. Appl. Phys.

L. R. de Freitas, E. C. da Silva, A. M. Mansanares, M. B. C. Pimentel, S. Eleutério Filho, J. A. Batista, "Thermoreflectance microscopy applied to the study of electrostatic discharge degradation in metal-oxide-semiconductor field-effect transistors," J. Appl. Phys. 97, 104510 (2005).
[CrossRef]

D. Dietzel, B. K. Bein, and J. Pelzl, "Double modulated thermoreflectance microscopy of semiconductor devices," J. Appl. Phys. 93, 9043-9047 (2003).
[CrossRef]

C. Xu and W. Denk, "Comparison of one- and two-photon optical beam-induced current imaging," J. Appl. Phys. 86, 2226-2231 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499 (2003).
[CrossRef]

Science

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-75 (1990).
[CrossRef] [PubMed]

Other

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

S. Takasu, "Application of OBIC/OBIRCH/OBHIC (semiconductor failure analysis)," JEOL News, Electron Opt. Instrum. 36E, 60-63 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical platform for spectral microthermography and OBIC microscopy. Sample is scanned across a focused excitation beam from 643   nm cw He–Ne laser (for 1PE) or 800   nm Ti:sapphire femtosecond laser (for 2PE) to produce an OBIC image. Sample is simultaneously illuminated with broadband light from tungsten lamp and reflectance is analyzed with a GRISM spectrometer.

Fig. 2
Fig. 2

(a) Dependence of detected OBIC signal from LED sample with excitation power. Slopes of 2P-OBIC (quadratic) and 1P-OBIC (linear) responses are 1.9962 and 0.9095, respectively. (b) Dependence of OBIC signal with axial position of sample relative to excitation beam focus at z = 0 . Generated 1P-OBIC signal is independent of axial position. 2P-OBIC signal depends on axial position with peak at z = 0 (FWHM = 50 μ m ). Inset, OBIC image in presence (2P-OBIC) and absence of mode locking.

Fig. 3
Fig. 3

(a) 2P- and (b) 1P-OBIC images at different axial positions of a good LED sample. 2P-OBIC images have higher contrast and are less prone to scattering effects. (c) 2P-OBIC image shows inhomogeneities (ripples) in active layer of defective LED sample. Inhomogeneities are invisible in corresponding 1P-OBIC image. Image size: 480 × 480 μm2.

Fig. 4
Fig. 4

(Color online) Luminescence maps of LED sample at three different detection wavelengths and injection currents. The electroluminescence peak shifts with increasing injection current. Image size: 480 × 480 μ m 2 .

Fig. 5
Fig. 5

(Color online) Background-free differential thermal ( + Δ R ) maps of LED sample at different detection wavelengths (a) 506, (b) 538, and (c) 570   nm ; and injection currents. Hot spots (red) are revealed even in the presence of electroluminescence from biased LED sample. The outline in (c) is a reference LED image. Image size is 480 × 480 μ m 2 .

Fig. 6
Fig. 6

(Color online) Onset of defect in LED sample captured using (a) 2P-OBIC and (b) normalized spectral reflectance images (overlaid on reference LED image) at different injection currents. Spectral thermography affords greater thermal sensitivity but 2P-OBIC imaging offers higher spatial resolution. Image size: 480 × 480 μ m 2 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ R = ( d R / d T ) Δ T .

Metrics