Abstract

We propose an ultrafast pulse shaping method by modulating the pulse phase and amplitude by the electro-optic effect and Bragg diffraction in the aperiodically optical superlattice. Linear-chirped periodically poled lithium niobate is used. The input pulse can be shaped, for example, by compressing it through the extraordinary refractive index change of the crystal by applying and changing the external electric field.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  2. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  3. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
    [CrossRef]
  4. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
    [CrossRef]
  5. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, "Ultrafast pulse shaping: amplification and characterization," Opt. Express 3, 366-375 (1998).
    [CrossRef] [PubMed]
  6. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  7. M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
    [CrossRef]
  8. H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
    [CrossRef]
  9. M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
    [CrossRef]
  10. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
    [CrossRef]

2002 (1)

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

2000 (2)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
[CrossRef]

1999 (1)

1998 (3)

1997 (2)

1996 (1)

M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Abernethy, J. A.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

Backus, S.

Beach, N. M.

Dugan, M. A.

Eason, R. W.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

Efimov, A.

Fetterman, M. R.

Gawith, C. B. E.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

Geiger, H.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

Gnewuch, H.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

Goswami, D.

Kapteyn, H.

Keusters, D.

Krause, J. L.

Maginnis, K.

Meshulach, D.

Moores, M. D.

Mourou, G.

Murnane, M.

Ooki, H.

M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Pannell, C. N.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

Reitze, D. H.

Rhee, J.-K.

Ross, G. W.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

Russek, U.

Saitoh, M.

M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Silberberg, Y.

Smith, P. G. R.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

Tull, J. X.

Vdovin, G.

Warren, W. S.

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Yamada, M.

M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
[CrossRef]

M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Yang, W.

Yelin, D.

Zeek, E.

Appl. Phys. Lett. (2)

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002).
[CrossRef]

M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Pulse shaping apparatus based on the linear-chirped PPLN crystal.

Fig. 2
Fig. 2

Schematic of a linear-chirped PPLN pulse modulator device.

Fig. 3
Fig. 3

Calculated result of a relation between the periods in the crystal and the corresponding wavelengths of the incident pulse.

Fig. 4
Fig. 4

Calculated result of a relation between the values of applied voltage on the lithium niobate crystal and the corresponding wavelengths of the incident pulse.

Fig. 5
Fig. 5

Calculated result of a dependence of a diffracted optical power of different wavelengths of the input pulse on the applied voltages between the electrodes on both faces of the crystal.

Fig. 6
Fig. 6

Calculated result of pulse compression (790– 820   nm ). x axis, time; y axis, electric field of the optic pulse. Dotted curve, electric field of the input chirped Guassian pulse; solid curve, compression limit decided by Δ ν Δ t 1 . Oscillation curve, calculation result of the output pulse.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ n e ( λ , E ) = 1 2 [ n e ( λ ) ] 3 r 33 E ,
sin θ B = λ 2 n e Λ ,
n e 2 ( λ , T ) = A + B 1 λ 2 B 2 2 C 1 ( λ ; μ m ) ,
Λ = λ 2 n e sin θ B .
Δ ϕ ( λ , E ) = 2 π λ Δ n e ( λ , T , E ) L .
Δ ϕ ( λ , E ) = π λ [ n e ( λ , T ) ] 3 r 33 V D d ,
η = sin 2 ( π d 2 λ [ n e ( λ ) ] 3 r 33 V D ) .
H ( ω ) = E ˜ o u t ( ω ) E ˜ i n ( ω ) .
E o u t ( Ω ) = 1 2 π E 0 τ 0 exp [ 1 2 τ 0 2 Ω 2 ] ,
E i n ( Ω ) = 1 2 π E 0 τ 0 exp [ 1 2 ( τ 0 2 + i C 1 ) Ω 2 ] ,
ϕ i n ( ω ) = 1 2 C 1 Ω 2 = 1 2 C 1 ( ω ω 0 ) 2 .

Metrics