Abstract

We have studied terahertz (THz) emissions from n-InAs and n-GaAs using an ensemble Monte Carlo method. Our simulations indicate that higher amplitude THz waves from n-InAs, compared with those from n-GaAs, result from the difference in the radiation mechanisms between these two samples and are not completely dependent on the most commonly recognized fact: lighter electron effective mass in n-InAs. The excitation-wavelength-dependent and doping-level-dependent THz emissions from n-InAs are found to be quite different from those from n-GaAs. The corresponding mechanisms are analyzed by the introduction of a weighted electric field, which is weighted by the photogenerated carrier density in a semiconductor. The simulated results are in good qualitative agreement with experimental observations from other authors.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
    [CrossRef]
  2. R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
    [CrossRef] [PubMed]
  3. X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
    [CrossRef]
  4. K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
    [CrossRef]
  5. M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
    [CrossRef]
  6. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
    [CrossRef]
  7. R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
    [CrossRef]
  8. J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).
  9. J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
    [CrossRef]
  10. R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
    [CrossRef]
  11. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
    [CrossRef]
  12. G.-R. Lin and C.-L. Pan, "Characterization of optically excited terahertz radiation from Arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).
  13. D. F. Liu and J. Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from Large-Aperture Photoconductive Antenna," J. Luminescence 116, 28-34 (2006).
    [CrossRef]
  14. D. F. Liu and Y. Z. Tan, "Monte Carlo study of the screening effect of carriers on THz radiation from InAs with high excitation intensity," Appl. Opt. 45, 569-572 (2006).
    [CrossRef] [PubMed]
  15. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
    [CrossRef]
  16. C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
    [CrossRef]
  17. http://www.ioffe.rssi.ru. Parameters of semiconductor physics for InAs and GaAs are from this Web site.
  18. X. Zhou and T. Y. Hsiang, "EMCUR--An ensemble Monte Carlo program for III-V compound semiconductor device modeling and simulation," Research Report No. RR-001-11-89 (University of Rochester, 1989).
  19. C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
    [CrossRef]
  20. T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
    [CrossRef]

2006

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

D. F. Liu and J. Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from Large-Aperture Photoconductive Antenna," J. Luminescence 116, 28-34 (2006).
[CrossRef]

D. F. Liu and Y. Z. Tan, "Monte Carlo study of the screening effect of carriers on THz radiation from InAs with high excitation intensity," Appl. Opt. 45, 569-572 (2006).
[CrossRef] [PubMed]

2005

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
[CrossRef]

2004

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
[CrossRef]

2002

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

2001

G.-R. Lin and C.-L. Pan, "Characterization of optically excited terahertz radiation from Arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

2000

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

1999

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

1998

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

1993

R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
[CrossRef] [PubMed]

1992

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

1983

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Arai, S.

T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
[CrossRef]

Ascazubi, R.

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

Auston, D. H.

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

Beigang, R.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Bucksbaum, P. H.

R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
[CrossRef] [PubMed]

Camus, E. C.

J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
[CrossRef]

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

Chen, J. X.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

Cook, D. J.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Davis, A. G.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Dowd, A.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Driver, R.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Dutta, P. S.

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

Fraser, M. D.

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

Gotoh, H.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Hattori, T.

T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
[CrossRef]

Hirayama, Y.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Hochstrasser, R. M.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

Hsiang, T. Y.

X. Zhou and T. Y. Hsiang, "EMCUR--An ensemble Monte Carlo program for III-V compound semiconductor device modeling and simulation," Research Report No. RR-001-11-89 (University of Rochester, 1989).

Hughes, J. L.

J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
[CrossRef]

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

Izumida, S.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Jacoboni, C.

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Jagadish, C.

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

Johnston, M. B.

J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
[CrossRef]

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Jones, R. R.

R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
[CrossRef] [PubMed]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Kusuda, K.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Lin, G.-R.

G.-R. Lin and C.-L. Pan, "Characterization of optically excited terahertz radiation from Arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Linfield, E. H.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Liu, D. F.

D. F. Liu and J. Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from Large-Aperture Photoconductive Antenna," J. Luminescence 116, 28-34 (2006).
[CrossRef]

D. F. Liu and Y. Z. Tan, "Monte Carlo study of the screening effect of carriers on THz radiation from InAs with high excitation intensity," Appl. Opt. 45, 569-572 (2006).
[CrossRef] [PubMed]

Liu, K.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

Liu, Z.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Miyashita, S.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Morlino, E. A.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

Ohtake, H.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Pan, C.-L.

G.-R. Lin and C.-L. Pan, "Characterization of optically excited terahertz radiation from Arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Pino, R.

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

Qin, J. Y.

D. F. Liu and J. Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from Large-Aperture Photoconductive Antenna," J. Luminescence 116, 28-34 (2006).
[CrossRef]

Reggiani, L.

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Sarukura, N.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Shneider, C.

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

Tan, Y. Z.

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Tukamoto, K.

T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
[CrossRef]

Wallenstein, R.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Weiss, C.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Whittaker, D. M.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Wilke, I.

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

Xu, J. Z.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

Yadoya, Y.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Yamanishi, M.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Yano, R.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

You, D.

R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
[CrossRef] [PubMed]

Yuan, T.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

Zhang, X. C.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

Zhang, X.-C.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

Zhou, X.

X. Zhou and T. Y. Hsiang, "EMCUR--An ensemble Monte Carlo program for III-V compound semiconductor device modeling and simulation," Research Report No. RR-001-11-89 (University of Rochester, 1989).

Appl. Opt.

Appl. Phys. B

G.-R. Lin and C.-L. Pan, "Characterization of optically excited terahertz radiation from Arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Appl. Phys. Lett.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced gneration of THz radiation from semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Chem. Phys. Lett.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chem. Phys. Lett. 309, 221-228 (1999).
[CrossRef]

J. Appl. Phys.

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Yadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

J. Luminescence

D. F. Liu and J. Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from Large-Aperture Photoconductive Antenna," J. Luminescence 116, 28-34 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

T. Hattori, S. Arai, and K. Tukamoto, "Ultrafast electron dynamics in GaAs and InP studied by time-resolved terahertz emission spectroscopy," Jpn. J. Appl. Phys. 43, 7546-7551 (2004).
[CrossRef]

Phys. Rev. B

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B 73, 155330-155335 (2006).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davis, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, "Enhanced terahertz emission from impurity compensated GaSb," Phys. Rev. B 72, 045328 (2005).
[CrossRef]

J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330 (2004).

Phys. Rev. Lett.

R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1238 (1993).
[CrossRef] [PubMed]

Rev. Mod. Phys.

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Semicond. Sci. Technol.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davis, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Solid State Commun.

J. L. Hughes, E. C. Camus, and M. B. Johnston, "Simulation and optimization of terahertz emission from InGaAs and InP," Solid State Commun. 136, 595-600 (2005).
[CrossRef]

Other

http://www.ioffe.rssi.ru. Parameters of semiconductor physics for InAs and GaAs are from this Web site.

X. Zhou and T. Y. Hsiang, "EMCUR--An ensemble Monte Carlo program for III-V compound semiconductor device modeling and simulation," Research Report No. RR-001-11-89 (University of Rochester, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Temporal THz waveforms from (a) n-InAs and (b) n-GaAs. In both panels the solid curves are calculated with both the photo-Dember field and surface depletion field considered, and dashed curves are with the surface depletion field are ignored. The optical excitation conditions and doping concentration in (a) are identical to those in (b). Wavelength, 800   nm ; optical fluence, 10 5 mJ / cm 2 ; and doping concentration, 10 16 cm 3 .

Fig. 2
Fig. 2

THz temporal waveforms from n-InAs (solid curve) and n-GaAs (dashed curve). Optical excitation conditions: wavelength, 800   nm ; optical fluence, 10 5 mJ / cm 2 ; and doping concentration, 10 16 cm 3 .

Fig. 3
Fig. 3

Distributions of electric fields in (left) n-GaAs and (right) n-InAs. (a), (c) Positive and negative electric fields in n-GaAs, respectively; (b), (d) positive and negative electric fields in n-InAs, respectively.

Fig. 4
Fig. 4

THz temporal waveforms from (a) n-InAs and (b) n-GaAs. The data in both panels express the excitation wavelengths. The optical excitation conditions and doping concentration in (a) are identical to those in (b). Wavelength, 800   nm ; optical fluence, 10 5 mJ / cm 2 ; and doping concentration, 10 16 cm 3 .

Fig. 5
Fig. 5

Distributions of the weighted electric field F w in (a) the depletion layer of n-GaAs and (b) the region beyond the depletion layer of n-InAs. The data in both panels express the excitation wavelengths.

Fig. 6
Fig. 6

THz temporal waveforms from (a) n-InAs and (b) n-GaAs at an excitation wavelength of 800   nm . In both panels, solid curves, dashed curves, and dotted curves are for doping levels of 5 × 10 16 cm 3 , 1 × 10 17 cm 3 , and 5 × 10 17 cm 3 , respectively.

Fig. 7
Fig. 7

The distributions of the weighted electric field in the depletion layer of n-GaAs with doping levels (solid) 5 × 10 16 cm 3 , (dashed) 1 × 10 17 cm 3 , and (dotted) 5 × 10 17 cm 3 .

Tables (1)

Tables Icon

Table 1 Parameters for Optical Excitations

Equations (86)

Equations on this page are rendered with MathJax. Learn more.

Γ L X
5 × 10 17 cm 3
μ n ( z ) F ( z ) D n ( z ) = 0 ,
n ( z )
F ( z )
D = μ ( K B T / e )
n ( z ) = n 0 e ( e / K B T ) φ ( z )
n 0
φ ( z )
V s < 0
n s = n ( 0 ) = n 0 e e | V s | / K B T .
n ( z )
φ ( z )
d 2 φ ( z ) d z 2 = e ε ε 0 [ n ( z ) N d ] = e n 0 ε ε 0 [ 1 e e φ ( z ) / K B T ] .
N d
n 0
d φ d z = α [ e φ K B T + e e φ / K B T 1 ] 1 / 2 ,
α = 2 K B T n 0 / ε ε 0
n ( z )
F ( z )
φ ( z = 0 ) = V s
j ( t ) = j e ( t ) + j h ( t ) = 1 Vol [ Q e i N e v i ( t ) + Q h j N h v j ( t ) ] ,
Q h
v ( t )
E rad d d t j ( t ) ,
j ( t )
N = 30, 000
T = 300 K
h = 2   nm
N = 1000
n = 5 × 10 16
1 × 10 17
5 × 10 17 cm 3
h × N = 2   μm
100   fs
10 5 mJ / cm 2
λ = 800   nm
n = 5 × 10 16 cm 3
λ = 800   nm
n = 5 × 10 16 cm 3
1550   nm
800   nm
700   nm
800   nm
800   nm
800   nm
1550   nm
F w
F w i = F i N i i N i .
N i
F i
F w i
i N i =
800   nm
800   nm
1550   nm
800   nm
1550   nm
800   nm
1550   nm
5 × 10 16 cm 3
1 × 10 17 cm 3
5 × 10 17 cm 3
800   nm
5 × 10 16 cm 3
1 × 10 17 cm 3
5 × 10 17 cm 3
F w
F w
800   nm
10 5 mJ / cm 2
10 16 cm 3
800   nm
10 5 mJ / cm 2
10 16 cm 3
800   nm
10 5 mJ / cm 2
10 16 cm 3
F w
800   nm
5 × 10 16 cm 3
1 × 10 17 cm 3
5 × 10 17 cm 3
5 × 10 16 cm 3
1 × 10 17 cm 3
5 × 10 17 cm 3

Metrics