Abstract

We present experimental results of reflectance and transmittance measurements of infrared radiation by high-density photogenerated free carriers in polycrystalline germanium, polycrystalline silicon, and chemical vapor deposition zinc selenide windows. Linearly polarized 1064 and 532  nm wavelength light from a Nd:YAG laser with a 130 ps pulse width were used to generate free carriers in the samples. Reflectance and transmittance were measured at a 10.6μm wavelength using a linearly polarized CO2 laser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
    [CrossRef]
  2. S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
    [CrossRef]
  3. M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
    [CrossRef]
  4. L. Fekete, J. Y. Hlinka, F. Kadlec, P. Kuzel, and P. Mounaix, "Active optical control of the terahertz reflectivity of high-resistivity semiconductors," Opt. Lett. 30, 1992-1994 (2005).
    [CrossRef] [PubMed]
  5. J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
    [CrossRef]
  6. G. E. Jellison and D. H. Lowndes, "Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures," Appl. Phys. Lett. 41, 594-596 (1982).
    [CrossRef]
  7. H. M. van Driel, "Kinetics of high-density plasmas generated in Si by 1.06 and 0.532 μm picosecond laser pulses," Phys. Rev. B 35, 8166-8176 (1987).
    [CrossRef]
  8. M. I. Gallant and H. M. van Driel, "Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium," Phys. Rev. B 26, 2133-2146 (1982).
    [CrossRef]
  9. K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasma in silicon," Phys. Rev. B 61, 2643-2650 (2000).
    [CrossRef]
  10. M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collisions in optically excited semiconductors," Phys. Rev. B 35, 7986-7992 (1987).
    [CrossRef]

2005 (1)

2004 (1)

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasma in silicon," Phys. Rev. B 61, 2643-2650 (2000).
[CrossRef]

1998 (1)

S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
[CrossRef]

1990 (1)

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

1987 (2)

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collisions in optically excited semiconductors," Phys. Rev. B 35, 7986-7992 (1987).
[CrossRef]

H. M. van Driel, "Kinetics of high-density plasmas generated in Si by 1.06 and 0.532 μm picosecond laser pulses," Phys. Rev. B 35, 8166-8176 (1987).
[CrossRef]

1982 (2)

M. I. Gallant and H. M. van Driel, "Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium," Phys. Rev. B 26, 2133-2146 (1982).
[CrossRef]

G. E. Jellison and D. H. Lowndes, "Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures," Appl. Phys. Lett. 41, 594-596 (1982).
[CrossRef]

1975 (1)

A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
[CrossRef]

Alcock, A. J.

A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
[CrossRef]

Cole, B. E.

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

Combescot, M.

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collisions in optically excited semiconductors," Phys. Rev. B 35, 7986-7992 (1987).
[CrossRef]

Combescot, R.

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collisions in optically excited semiconductors," Phys. Rev. B 35, 7986-7992 (1987).
[CrossRef]

Corkum, P. B.

A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
[CrossRef]

Dennis, W. M.

S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
[CrossRef]

Doty, M. F.

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

Enyeart, D. P.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

Fekete, L.

Felix, C. L.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

Gallant, M. I.

M. I. Gallant and H. M. van Driel, "Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium," Phys. Rev. B 26, 2133-2146 (1982).
[CrossRef]

Hlinka, J. Y.

James, D. J.

A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
[CrossRef]

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, "Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures," Appl. Phys. Lett. 41, 594-596 (1982).
[CrossRef]

Kadlec, F.

Kaminski, J. P.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

King, B. T.

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

Kirkpatrick, S. M.

S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
[CrossRef]

Kuzel, P.

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, "Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures," Appl. Phys. Lett. 41, 594-596 (1982).
[CrossRef]

Mounaix, P.

Ramian, G.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

Sherwin, M. S.

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasma in silicon," Phys. Rev. B 61, 2643-2650 (2000).
[CrossRef]

Spector, J. S.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

van Driel, H. M.

H. M. van Driel, "Kinetics of high-density plasmas generated in Si by 1.06 and 0.532 μm picosecond laser pulses," Phys. Rev. B 35, 8166-8176 (1987).
[CrossRef]

M. I. Gallant and H. M. van Driel, "Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium," Phys. Rev. B 26, 2133-2146 (1982).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasma in silicon," Phys. Rev. B 61, 2643-2650 (2000).
[CrossRef]

White, D. T.

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

Yang, H.-S.

S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

J. P. Kaminski, J. S. Spector, C. L. Felix, D. P. Enyeart, D. T. White, and G. Ramian, "Far-infrared cavity dump coupling of the UC Santa Barbara free-electron laser," Appl. Phys. Lett. 57, 2770-2772 (1990).
[CrossRef]

G. E. Jellison and D. H. Lowndes, "Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures," Appl. Phys. Lett. 41, 594-596 (1982).
[CrossRef]

A. J. Alcock, P. B. Corkum, and D. J. James, "A fast scalable switching technique for high-power CO2 laser radiation," Appl. Phys. Lett. 27, 680-682 (1975).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (5)

S. M. Kirkpatrick, H.-S. Yang, and W. M. Dennis, "Picosecond acoustic phonon dynamics in LaF3:Pr3+," Phys. Rev. B 58, 5417-5422 (1998).
[CrossRef]

H. M. van Driel, "Kinetics of high-density plasmas generated in Si by 1.06 and 0.532 μm picosecond laser pulses," Phys. Rev. B 35, 8166-8176 (1987).
[CrossRef]

M. I. Gallant and H. M. van Driel, "Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium," Phys. Rev. B 26, 2133-2146 (1982).
[CrossRef]

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasma in silicon," Phys. Rev. B 61, 2643-2650 (2000).
[CrossRef]

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collisions in optically excited semiconductors," Phys. Rev. B 35, 7986-7992 (1987).
[CrossRef]

Rev. Sci. Instrum. (1)

M. F. Doty, B. E. Cole, B. T. King, and M. S. Sherwin, "Wavelength-specific laser-activated switches for improved contrast ratio in generation of short THz pulses," Rev. Sci. Instrum. 75, 2921-2925 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical experimental setup for a transmission measurement.

Fig. 2
Fig. 2

Minimum transmittances (normalized with the transmittance before the Nd:YAG laser pulse) of the Ge, Si, and ZnSe window at 10.6 μ m induced by either a 130 ps 1064 or 532   nm Nd:YAG laser pulse at different fluences.

Fig. 3
Fig. 3

Maximum reflectance of the Ge and Si window at 10.6 μ m induced by either a 130 ps 1064 or 532   nm Nd:YAG laser pulse at different fluences. Due to the fast decay time of the signal, absolute reflectance could not be obtained.

Fig. 4
Fig. 4

(a) Time-resolved normalized transmittance of the Ge, Si, and ZnSe window at 10.6 μ m induced by either a 130 ps 1064 or 532   nm Nd:YAG laser pulse. (b) Transmitted intensity of the CO 2 laser (850 μs pulse) through the Si window irradiated with a 130 ps 1064   nm pulse.

Fig. 5
Fig. 5

Reflectance (detector response) of Si irradiated with a 10 mJ / cm 2 532   nm Nd:YAG laser pulse shown with and without a Ge filter at the detector.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I a = I 0 R T ,
n ( z ) = ( 1 R ) I 0 α   exp ( α z ) ħ ω L a s e r ,
R = α A n 3 + α R n 2 + α S R H n ,
n Re f r 2 = ε ( ω ) ,
ε ( ω ) = ε 0 + i 4 π e 2 n τ m * ω ( 1 i ω τ ) ,

Metrics