Abstract

An antireflective periodic structure different from the moth-eye structure is proposed in a resonance domain whose period is greater than the wavelength of incident light. Using rigorous coupled-wave analysis in the TE mode, a reflectivity of less than 0.2% is performed in a period larger than the wavelength, when an aspect ratio is unity. Changes in diffraction efficiency and transmissivity are small at different wavelengths. This is explained by a newly derived equation based on the vector theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Ho, C.-Y. Chen, C.-M. Huang, W. J. Lee, W.-R. Liouand, and C.-C. Chang, "Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display applications," Appl. Opt. 44, 6176-6180 (2005).
    [CrossRef] [PubMed]
  2. S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
    [CrossRef]
  3. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
    [CrossRef]
  4. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
    [CrossRef]
  5. H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
    [CrossRef]
  6. P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
    [CrossRef]
  7. Y.-Y. Liou, "Universal visible antireflection coating designs for various substrates," Jpn. J. Appl. Phys. 43, 1339-1342 (2005).
    [CrossRef]
  8. Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005).
    [CrossRef]
  9. E. B. Grann, M. G. Moharam, and D. A. Pommet, "Optimal design for antireflective tapered two-dimensional subwavelength grating structures," J. Opt. Soc. Am. A 12, 333-342 (1995).
    [CrossRef]
  10. D. H. Raguin and G. M. Morris, "Antireflection structured surfaces for the infrared spectral region," Appl. Opt. 32, 1154-1167 (1993).
    [CrossRef] [PubMed]
  11. Y. Ono, Y. Kimura, and N. Nishida, "Antireflection effect in ultrahigh spatial-frequency holographic relief gratings," Appl. Opt. 26, 1142-1146 (1987).
    [CrossRef] [PubMed]
  12. Y. Kanamori, M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24, 1422-1424 (1999).
    [CrossRef]
  13. C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002).
    [CrossRef]
  14. R. C. Enger and S. K. Case, "Optical elements with ultrahigh spatial-frequency surface corrugations," Appl. Opt. 22, 3220-3226 (1983).
    [CrossRef] [PubMed]
  15. E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005).
    [CrossRef]
  16. Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002).
    [CrossRef]
  17. J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
    [CrossRef]
  18. D. H. Raguin and G. M. Morris, "Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles," Appl. Opt. 32, 2582-2598 (1993).
    [CrossRef] [PubMed]
  19. S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.
  20. H. Lajunen, J. Tervo, and J. Turunen, "High-efficiency broadband diffractive elements based on polarization gratings," Opt. Lett. 29, 803-805 (2004).
    [CrossRef] [PubMed]
  21. E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.
  22. F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
    [CrossRef]
  23. M. Okui, M. Kobayashi, J. Arai, and F. Okano, "Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display," Appl. Opt. 44, 4475-4483 (2005).
    [CrossRef] [PubMed]
  24. B. Kress and P. Meyryueis, Digital Diffractive Optics (Wiley, 2000).
  25. D. A. Pommet, M. G. Moharam, and E. B. Grann, "Limits of scalar diffraction theory for diffractive phase elements," J. Opt. Soc. Am. A 11, 1827-1834 (1994).
    [CrossRef]
  26. D. Maystre, Rigorous Vector Theories of Diffraction Gratings (Elsevier Science, 1984).
  27. E. N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis," J. Opt. Soc. Am. A 19, 702-715 (2002).
    [CrossRef]
  28. H. Ichikawa, "Numerical analysis of microretroreflectors: transition reflection to diffraction," J. Opt. A 6, S121-S127 (2004).
    [CrossRef]
  29. L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
    [CrossRef]
  30. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  31. Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997).
    [CrossRef]
  32. I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
    [CrossRef]
  33. J. E. Noponen and A. Vasara, "Electric theory and design of diffractive-lens arrays," J. Opt. Soc. Am. A 10, 434-443 (1993).
    [CrossRef]
  34. A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
    [CrossRef]
  35. I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).
  36. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983).
    [CrossRef]
  37. W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
    [CrossRef]
  38. Y. Arieli, S. Ozeri, N. Eisenberg, and S. Noach, "Design of a diffractive optical element for wide spectral bandwidth," Opt. Lett. 23, 823-824 (1998).
    [CrossRef]
  39. M. W. Farn and J. W. Goodman, "Diffractive doublet corrected on-axis at two wavelengths," in SPIE International Lens Design Conference (SPIE, 1990), Vol. 1354, pp. 24-29.
  40. Y. Arieli, S. Ozeri, N. Eisenberg, and S. Noach, "Design of a diffractive optical element for wide spectral bandwidth," Opt. Lett. 23, 823-824 (1998).
    [CrossRef]
  41. T. Nakai and H. Ogawa, "Development of 3-layer diffractive optical elements employed for wide incident angles," in 2004 International Conference Optics and Photonics in Technology Frontier Tokyo (Optical Society of Japan/JSAP and International Commission for Optics, 2004), pp. 547-548.
  42. J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
    [CrossRef]
  43. M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.
  44. C. Sauvan, P. Lalanne, and M.-S. L. Lee, "Broadband blazing with artificial dielectrics," Opt. Lett. 29, 1593-1595 (2004).
    [CrossRef] [PubMed]
  45. A. K. Aristov, V. Novosel'skii, G. Semenov, and T. V. Schedrunova, "Holographic diffraction grating for side lightning of liquid-crystal displays," J. Opt. Technol. 70, 480-484 (2003).
    [CrossRef]
  46. D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
    [CrossRef]
  47. L. A. Whitehead, W. Su, and D. N. Grandmaison, "Evaluation of diffraction loss in prism light guides by finite-differnce time-domain field modeling," Appl. Opt. 37, 5836-5842 (1998).
    [CrossRef]
  48. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  49. M. Jiang, T. Tamir, and S. Zhang, "Modal theory of diffraction by multilayered gratings containing dielectric and metallic components," J. Opt. Soc. Am. A 18, 807-820 (2001).
    [CrossRef]
  50. E. Popov and M. Neviere, "Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A 18, 2886-2894 (2001).
    [CrossRef]
  51. C.-H. Lin, K. M. Leung, and T. Tamir, "Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations," J. Opt. Soc. Am. A 19, 2005-2017 (2002).
    [CrossRef]

2005 (6)

Y.-Y. Liou, "Universal visible antireflection coating designs for various substrates," Jpn. J. Appl. Phys. 43, 1339-1342 (2005).
[CrossRef]

Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005).
[CrossRef]

J.-J. Ho, C.-Y. Chen, C.-M. Huang, W. J. Lee, W.-R. Liouand, and C.-C. Chang, "Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display applications," Appl. Opt. 44, 6176-6180 (2005).
[CrossRef] [PubMed]

E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005).
[CrossRef]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, "Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display," Appl. Opt. 44, 4475-4483 (2005).
[CrossRef] [PubMed]

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

2004 (6)

C. Sauvan, P. Lalanne, and M.-S. L. Lee, "Broadband blazing with artificial dielectrics," Opt. Lett. 29, 1593-1595 (2004).
[CrossRef] [PubMed]

H. Lajunen, J. Tervo, and J. Turunen, "High-efficiency broadband diffractive elements based on polarization gratings," Opt. Lett. 29, 803-805 (2004).
[CrossRef] [PubMed]

H. Ichikawa, "Numerical analysis of microretroreflectors: transition reflection to diffraction," J. Opt. A 6, S121-S127 (2004).
[CrossRef]

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

2003 (5)

H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
[CrossRef]

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
[CrossRef]

A. K. Aristov, V. Novosel'skii, G. Semenov, and T. V. Schedrunova, "Holographic diffraction grating for side lightning of liquid-crystal displays," J. Opt. Technol. 70, 480-484 (2003).
[CrossRef]

2002 (5)

C.-H. Lin, K. M. Leung, and T. Tamir, "Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations," J. Opt. Soc. Am. A 19, 2005-2017 (2002).
[CrossRef]

E. N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis," J. Opt. Soc. Am. A 19, 702-715 (2002).
[CrossRef]

Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002).
[CrossRef]

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002).
[CrossRef]

2001 (2)

2000 (2)

I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
[CrossRef]

1999 (1)

1998 (4)

1997 (3)

L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997).
[CrossRef]

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (3)

1987 (1)

1983 (3)

1982 (1)

Ammer, T.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
[CrossRef]

Arai, J.

Arieli, Y.

Aristov, A. K.

Asano, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Baba, T.

H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
[CrossRef]

Banerjee, S.

S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.

Berginc, G.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Blasi, B.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Brundrett, D. L.

E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.

Buhler, C.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Case, S. K.

Chang, C.-C.

Chao, W.

W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
[CrossRef]

Chen, C.-Y.

Chen, Y.

E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005).
[CrossRef]

Chi, S.

W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
[CrossRef]

Choi, H. Y.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Choi, J. S.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Cole, J. B.

S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.

Eisenberg, N.

Enger, R. C.

Escoubas, L.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Fan, S.

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

Farn, M. W.

M. W. Farn and J. W. Goodman, "Diffractive doublet corrected on-axis at two wavelengths," in SPIE International Lens Design Conference (SPIE, 1990), Vol. 1354, pp. 24-29.

Fauchet, P. M.

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002).
[CrossRef]

Feng, D.

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997).
[CrossRef]

Fiala, P.

I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).

Flory, F.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Fujita, M.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983).
[CrossRef]

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
[CrossRef]

E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.

Giovannini, H.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Glytsis, E. N.

E. N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis," J. Opt. Soc. Am. A 19, 702-715 (2002).
[CrossRef]

E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.

Gombert, A.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Goodman, J. W.

M. W. Farn and J. W. Goodman, "Diffractive doublet corrected on-axis at two wavelengths," in SPIE International Lens Design Conference (SPIE, 1990), Vol. 1354, pp. 24-29.

Grandmaison, D. N.

Grann, E. B.

Hane, K.

Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24, 1422-1424 (1999).
[CrossRef]

Hasegawa, M.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Ho, J.-J.

Hobfeld, W.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Huang, C.-M.

Ichikawa, H.

H. Ichikawa, "Numerical analysis of microretroreflectors: transition reflection to diffraction," J. Opt. A 6, S121-S127 (2004).
[CrossRef]

H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
[CrossRef]

Ishihara, K.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Jiang, M.

Jin, G.

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

Joannopoulos, J.

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

Kallioniemi, I.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
[CrossRef]

Kanamori, E. R. Y.

E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005).
[CrossRef]

Kanamori, Y.

Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24, 1422-1424 (1999).
[CrossRef]

Kim, J. H.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Kimura, Y.

Kintaka, K.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Kobayashi, M.

Kress, B.

B. Kress and P. Meyryueis, Digital Diffractive Optics (Wiley, 2000).

Kuo, C. J.

W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
[CrossRef]

Lajunen, H.

Lalanne, P.

Larochelle, S.

Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997).
[CrossRef]

Lee, M. G.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Lee, M.-S. L.

Lee, S. M.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Lee, W. J.

Leung, K. M.

Li, L.

Lin, C.-H.

Liou, Y.-Y.

Y.-Y. Liou, "Universal visible antireflection coating designs for various substrates," Jpn. J. Appl. Phys. 43, 1339-1342 (2005).
[CrossRef]

Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005).
[CrossRef]

Liouand, W.-R.

Liu, Y.-T.

Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005).
[CrossRef]

Loli, M.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Maystre, D.

D. Maystre, Rigorous Vector Theories of Diffraction Gratings (Elsevier Science, 1984).

McGehee, M. D.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

Meyryueis, P.

B. Kress and P. Meyryueis, Digital Diffractive Optics (Wiley, 2000).

Mick, J.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Min, J. H.

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Mizutani, A.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Moharam, M. G.

Molteni, P.

M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.

Morris, G. M.

Nakada, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Nakai, T.

T. Nakai and H. Ogawa, "Development of 3-layer diffractive optical elements employed for wide incident angles," in 2004 International Conference Optics and Photonics in Technology Frontier Tokyo (Optical Society of Japan/JSAP and International Commission for Optics, 2004), pp. 547-548.

Neviere, M.

Nishi, J.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Nishida, N.

Nitz, P.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Noach, S.

Noda, S.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Noma, N.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Noponen, J. E.

Novosel'skii, V.

Numata, H.

F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
[CrossRef]

Ogawa, H.

T. Nakai and H. Ogawa, "Development of 3-layer diffractive optical elements employed for wide incident angles," in 2004 International Conference Optics and Photonics in Technology Frontier Tokyo (Optical Society of Japan/JSAP and International Commission for Optics, 2004), pp. 547-548.

Ohata, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Okano, F.

Okui, M.

Ono, Y.

Ozeri, S.

Pommet, D. A.

Popov, E.

Raguin, D. H.

Ralli, P.

M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.

Richter, I.

I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).

Rossi, M.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
[CrossRef]

Saafir, A. K.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

Sasaki, M.

Sauvan, C.

Schedrunova, T. V.

Semenov, G.

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Sheng, Y.

Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997).
[CrossRef]

Shimoji, N.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Shubert, E.

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

Simon, J.

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Striemer, C. C.

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002).
[CrossRef]

Su, W.

Taira, Y.

F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
[CrossRef]

Tamir, T.

Tervo, J.

Tohge, N.

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Tsuji, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Turunen, J.

Ueno, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Vasara, A.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

Walze, G.

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

Wenyon, M.

M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.

Whitehead, L. A.

Wu, Y. C.

W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
[CrossRef]

Yamada, F.

F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
[CrossRef]

Yan, Y.

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

Yang, X.

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

Yatagai, T.

S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.

Zhang, S.

Ziebarth, J. M.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

Adv. Funct. Mater. (1)

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (4)

H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
[CrossRef]

P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002).
[CrossRef]

J. Opt. A (3)

H. Ichikawa, "Numerical analysis of microretroreflectors: transition reflection to diffraction," J. Opt. A 6, S121-S127 (2004).
[CrossRef]

A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004).
[CrossRef]

D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (8)

J. Opt. Technol. (1)

J. Soc. Inf. Disp. (2)

F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
[CrossRef]

J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (3)

J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002).
[CrossRef]

Y.-Y. Liou, "Universal visible antireflection coating designs for various substrates," Jpn. J. Appl. Phys. 43, 1339-1342 (2005).
[CrossRef]

Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005).
[CrossRef]

Microelectron. Eng. (1)

E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005).
[CrossRef]

Opt. Commun. (3)

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000).
[CrossRef]

L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
[CrossRef]

W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998).
[CrossRef]

Opt. Lett. (5)

Opt. Rev. (1)

Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002).
[CrossRef]

Optik (1)

I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
[CrossRef]

Other (7)

S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.

E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.

B. Kress and P. Meyryueis, Digital Diffractive Optics (Wiley, 2000).

D. Maystre, Rigorous Vector Theories of Diffraction Gratings (Elsevier Science, 1984).

T. Nakai and H. Ogawa, "Development of 3-layer diffractive optical elements employed for wide incident angles," in 2004 International Conference Optics and Photonics in Technology Frontier Tokyo (Optical Society of Japan/JSAP and International Commission for Optics, 2004), pp. 547-548.

M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.

M. W. Farn and J. W. Goodman, "Diffractive doublet corrected on-axis at two wavelengths," in SPIE International Lens Design Conference (SPIE, 1990), Vol. 1354, pp. 24-29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) LC display and the antireflection structure.

Fig. 2
Fig. 2

(Color online) Geometry of dielectric surface relief grating for the antireflection.

Fig. 3
Fig. 3

(Color online) Angular distribution of the reflective diffraction efficiency for different wavelength λ with a 0° incident angle in case A. The period Λ is 5   μm , and wavelength λ varied from 0.47 to 0 .63   μm .

Fig. 4
Fig. 4

(Color online) Angular distribution of the reflective diffraction efficiency for different wavelength λ with a 30° incident angle in case A. The period Λ is 5   μm , and the wavelength is varied from 0.47 to 0 .63   μm .

Fig. 5
Fig. 5

(Color online) Angular distribution of the chroma of a L * u * v * system for the reflection of Fig. 3 in case A.

Fig. 6
Fig. 6

(Color online) Angular distribution of the transmissive diffraction efficiency for different wavelength λ with a 0° incident angle in case B. The period Λ is 5   μm , and the wavelength is varied from 0.47 to 0 .63   μm .

Fig. 7
Fig. 7

(Color online) Angular distribution of the transmissive diffraction efficiency for different wavelength λ with a 30° incident angle in case B. The period Λ is 5   μm , and the wavelength is varied from 0.47 to 0 .63   μm .

Fig. 8
Fig. 8

(Color online) Angular distribution of the chroma of a L * u * v * system for the reflection of Fig. 7 in case B.

Fig. 9
Fig. 9

(Color online) Angular distribution of the sum of the transmissive diffraction efficiency with an incident angle from 80 ° to 80°.

Fig. 10
Fig. 10

(Color online) Angular distribution of the transmissive diffraction efficiency in case B for different Λ / λ . The aspect ratio is 1. The diffraction efficiency is connected with the auxiliary line to make it intelligible.

Fig. 11
Fig. 11

(Color online) Periodicity of the total reflectivity for the different aspect ratio of d / Λ in case A. The total reflectivity is the sum of all the orders of reflective diffraction efficiency.

Fig. 12
Fig. 12

(Color online) Periodicity of the total reflectivity for the different aspect ratio of d / Λ in case B. The total reflectivity is the sum of the diffraction efficiency.

Tables (2)

Tables Icon

Table 1 Diffraction Angle and Diffraction Efficiency for Different Wavelengths and Different Diffraction Orders a

Tables Icon

Table 2 Λ∕λ at the Peak Position in Figs. 11 and 12 a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n I I I sin ( θ 3 ) n I sin ( θ 0 ) = i λ / Λ = L .
S 1 , i , n ( z ) = S i , n ( z ) ,
S 2 , i , n ( z ) = d S i , n ( z ) / d z ,
λ S 3 , i , n ( z ) = d S i , n ( z ) / d z .
T i = q = 1 2 s C q , N ω p , q , N exp [ { λ q , N j ( σ i , N z ^ ) } d ] ,
σ = k I I i K ,
K = 2 π / Λ .
k I I = 2 π ϵ I I ˜ 1 / 2 / λ ,
exp [ { λ q , N j ( σ i , N z ^ ) } d ] = exp [ { λ λ q , N j λ ( σ i , N z ^ ) } d / λ ] ,
λ ( σ i , N z ^ ) = 2 π ( ϵ 0 N ) 1 / 2 2 π i λ / Λ ,
T i = q = 1 2 s f q ( L , d / λ ) exp [ g i q ( L ) d / λ ] ,
f q ( L , d / λ ) = C q , N ω p , q , N ,
g i q ( L ) = exp [ { λ q , N j ( σ i , N z ^ ) } d ] .
T i = T i ( L , d / λ ) .
R total = 1 i T i ( L , d / λ ) ,

Metrics