Abstract

Optical interconnects can provide chip-to-chip data communication with much needed bandwidth as processor speed and density keep growing. Optical waveguides and couplers are essential components for implementing optical interconnections. Techniques for directly dispensing polymer waveguides in laser-ablated trenches on printed circuit boards and for fabricating optical couplers are presented for quick prototype of optical interconnects. High-quality UV curable polymer waveguides were routinely fabricated. High-efficiency couplers, blazed grating couplers on sloped waveguides, sloped facet metal film couplers, and reflective-undercut facet couplers can be fabricated by using excimer laser ablation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
    [CrossRef]
  2. N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
    [CrossRef]
  3. S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
    [CrossRef]
  4. R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
    [CrossRef]
  5. C. Choi, L. Lin, Y. Liu, and R. T. Chen, "Performance analysis of 10 μm-thick VCSEL array in fully embedded board level guided-wave optoelectronic interconnects," J. Lightwave Technol. 21, 1531-1535 (2003).
    [CrossRef]
  6. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightwave Technol. 22, 2168-2176 (2004).
    [CrossRef]
  7. H. Takahara, "Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems," IEEE J. Sel. Top. Quantum Electron. 9, 443-451 (2003).
    [CrossRef]
  8. B. S. Rho, S. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H. Rhee, "PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides," J. Lightwave Technol. 22, 2128-2134 (2004).
    [CrossRef]
  9. T. Kibler, S. Poferl, G. Böck, H.-P. Huber, and E. Zeeb, "Optical data buses for automotive applications," J. Lightwave Technol. 22, 2184-2199 (2004).
    [CrossRef]
  10. G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, and P. V. Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightwave Technol. 22, 2083-2090 (2003).
    [CrossRef]
  11. V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).
  12. R. Waldhausl, B. Schnabel, P. Dannberg, E. Kley, A. Brauer, and W. Karthe, "Efficient coupling into polymer waveguides by gratings," Appl. Opt. 36, 9383-9390 (1997).
    [CrossRef]
  13. Fiber Optic Center, Inc., 23 Centre Street, New Bedford, Mass. 02740-6322.
  14. Norland Products, Inc., 2540 Route 130, Suite 100, Cranbury, N.J. 08512.
  15. D. W. Boertjes, J. N. McMullin, and B. P. Keyworth, "Graded effective index planar polymer waveguides," J. Lightwave Technol. 14, 2714-2718 (1996).
    [CrossRef]
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  18. C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
    [CrossRef]

2005 (1)

S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
[CrossRef]

2004 (4)

2003 (4)

H. Takahara, "Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems," IEEE J. Sel. Top. Quantum Electron. 9, 443-451 (2003).
[CrossRef]

C. Choi, L. Lin, Y. Liu, and R. T. Chen, "Performance analysis of 10 μm-thick VCSEL array in fully embedded board level guided-wave optoelectronic interconnects," J. Lightwave Technol. 21, 1531-1535 (2003).
[CrossRef]

G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, and P. V. Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightwave Technol. 22, 2083-2090 (2003).
[CrossRef]

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

2002 (1)

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

2000 (1)

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

1999 (1)

C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
[CrossRef]

1997 (1)

1996 (1)

D. W. Boertjes, J. N. McMullin, and B. P. Keyworth, "Graded effective index planar polymer waveguides," J. Lightwave Technol. 14, 2714-2718 (1996).
[CrossRef]

1995 (2)

Bihari, B.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Böck, G.

Boertjes, D. W.

D. W. Boertjes, J. N. McMullin, and B. P. Keyworth, "Graded effective index planar polymer waveguides," J. Lightwave Technol. 14, 2714-2718 (1996).
[CrossRef]

Brauer, A.

Bristow, J.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Brooke, M. A.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Brown, A.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Chen, R. T.

Cho, H. S.

Cho, S. Y.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Cho, S.-Y.

S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
[CrossRef]

Choi, C.

Choi, C. C.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Choi, J.

Daele, P. V.

Dannberg, P.

Fike, S.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Gaylord, T. K.

Geerinck, P.

Goldhar, J.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Grann, E. B.

Ha, S.-W.

Haas, D.

Herman, W.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Hibbs-Brenner, M. K.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Holmes, A. S.

C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
[CrossRef]

Huber, H.-P.

Jokerst, N. M.

S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
[CrossRef]

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Joo, Y. J.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Kang, S.

Karthe, W.

Keyworth, B. P.

D. W. Boertjes, J. N. McMullin, and B. P. Keyworth, "Graded effective index planar polymer waveguides," J. Lightwave Technol. 14, 2714-2718 (1996).
[CrossRef]

Kibler, T.

Kley, E.

Koetsem, J. V.

Lee, C.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Leng, Y.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Lin, L.

Liu, Y.

Liu, Y. J.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Liu, Y. S.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Lucas, L.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Magera, J.

McMullin, J. N.

D. W. Boertjes, J. N. McMullin, and B. P. Keyworth, "Graded effective index planar polymer waveguides," J. Lightwave Technol. 14, 2714-2718 (1996).
[CrossRef]

Moharam, M. G.

Morlion, D.

Ottevaere, H.

Park, H.-H.

Paterson, C.

C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
[CrossRef]

Picor, B.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Poferl, S.

Pommet, D. A.

Put, S. V.

Rhee, B.-H.

Rho, B. S.

Savage, N.

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

Schnabel, B.

Seo, S. W.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Seo, S.-W.

S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
[CrossRef]

Smith, R. W.

C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
[CrossRef]

Steenberge, G. V.

Tabler, J.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Takahara, H.

H. Takahara, "Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems," IEEE J. Sel. Top. Quantum Electron. 9, 443-451 (2003).
[CrossRef]

Tang, S.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Thienpont, H.

Vrazel, M.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Waldhausl, R.

Wang, L.

Weinstein, D.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Wickman, R.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Wilkinson, S.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Wills, D. S.

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

Wu, L.

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Yun, V.

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Zeeb, E.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

H. Takahara, "Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems," IEEE J. Sel. Top. Quantum Electron. 9, 443-451 (2003).
[CrossRef]

N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, "The heterogeneous integration of optical interconnections into integrated microsystems," IEEE J. Sel. Top. Quantum Electron. 9, 350-360 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, "A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate," IEEE Photon. Technol. Lett. 17, 2197-2199 (2005).
[CrossRef]

IEEE Spectrum (1)

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Paterson, A. S. Holmes, and R. W. Smith, "Excimer laser ablation of microstructures: A numerical model," J. Appl. Phys. 86, 6538-6546 (1999).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (2)

Polym. Mater. Sci. Eng. (1)

V. Yun, Y. Leng, D. Weinstein, L. Lucas, W. Herman, C. Lee, and J. Goldhar, "Direct dispensing polymer waveguides for photonic device integration," Polym. Mater. Sci. Eng. 91, 349-350 (2004).

Proc. IEEE (1)

R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, "Fully embedded board-level guide-wave optoelectronic interconnects," Proc. IEEE 88, 780-793 (2000).
[CrossRef]

Other (2)

Fiber Optic Center, Inc., 23 Centre Street, New Bedford, Mass. 02740-6322.

Norland Products, Inc., 2540 Route 130, Suite 100, Cranbury, N.J. 08512.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) (a) Microscope picture of a directly dispensed two-layer polymer waveguide, (b) waveguide cross-sectional profile from a profilometer, (c) high-order transverse mode pattern of a multimode polymer waveguide from the numerical simulation by using the Optical Waveguide Mode Solver.

Fig. 2
Fig. 2

(Color online) (a) The top is a microscope picture of a laser-ablated trench, and the bottom is the trench depth profile; (b) the top is a microscope picture of a laser-ablated trench filled partially by a low-index cladding polymer layer, and the bottom is its depth profile; (c) the top is a microscope picture of a high-index core layer and a low-index cladding polymer layer inside the trench, and the bottom is its depth profile.

Fig. 3
Fig. 3

(Color online) Schematic of the laser ablation setup for blazed polymer grating fabrication. Tilting the sample holder with respect to the image plane produces laser-ablated gratings with a blazed profile.

Fig. 4
Fig. 4

(Color online) Schematics for reshaping the waveguide ends and fabricating grating couplers. (a) Initial phase of reshaping waveguide ends, (b) during the process of reshaping waveguide ends, (c) completing the reshaping of waveguide ends, (d) grating couplers fabricated by interfering two laser beams.

Fig. 5
Fig. 5

SEM images show the cross-sectional views of grating couplers fabricated using laser ablation of multiple shots. (a) Unblazed grating on a slant polymer waveguide with a slope angle of 10° and (b) blazed grating on a slant polymer waveguide with a slope angle of 16°.

Fig. 6
Fig. 6

(Color online) The coupling efficiencies of polymer grating couplers. Dots • are experimental data points of regular grating couplers at different slope angles and the dot–dash line is the numerical simulation result. The diamonds ♦ are experimental data points of blazed grating couplers at different slope angles, and the solid curve is the numerical simulation result.

Fig. 7
Fig. 7

(Color online) Sloped waveguide facet coupler with a gold film reflection layer underneath. (a) Schematic of a waveguide facet for input coupling, (b) microscope picture of a laser-ablated waveguide facet, (c) angular dependence of the coupling efficiency.

Fig. 8
Fig. 8

Waveguide undercut facets with different angles. (a) Waveguide facets fabricated by laser ablation at normal incidence, (b) laser-ablated waveguide undercut facet by tilting target holder to 60° from normal, (c) relationship among the waveguide facet angles and the tilting angle of the target holder of the ArF laser beam.

Metrics