Abstract

In the past we proposed a multidimensional speckle noise model to which we now include systematic phase variation effects. This extension makes it possible to define what is believed to be a novel coherence model able to identify the different sources of bias when coherence is estimated on multidimensional synthetic radar aperture (SAR) data. On the one hand, low coherence biases are basically due to the complex additive speckle noise component of the Hermitian product of two SAR images. On the other hand, the availability of the coherence model permits us to quantify the bias due to topography when multilook filtering is considered, permitting us to establish the conditions upon which information may be estimated independently of topography. Based on the coherence model, two coherence estimation approaches, aiming to reduce the different biases, are proposed. Results with simulated and experimental polarimetric and interferometric SAR data illustrate and validate both, the coherence model and the coherence estimation algorithms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (183)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription