Abstract

We present a reflective multiple-fold approach to visible imaging for high-resolution, large aperture cameras of significantly reduced thickness. This approach allows for reduced bulk and weight compared with large high-quality camera systems and improved resolution and light collection compared with miniature conventional cameras. An analysis of the properties of multiple-fold imagers is presented along with the design, fabrication, and testing of an eightfold prototype camera. This demonstration camera has a 35mm effective focal length, 0.7 NA, and 27mm effective aperture folded into a 5mm total thickness.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laikin, Lens Design (Dekker, 2001), Chap. 15.
  2. V. Draganov and D. G. James, "Compact telescope for free-space communications," in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 151-158 (2002).
    [CrossRef]
  3. E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).
  4. W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).
  5. E. R. Dowski and W. T. Cathey, "Extended depth of field through wavefront coding," Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  6. E. L. O'Neill, "Transfer function for an annular aperture," J. Opt. Soc. Am. 46, 285-288 (1956).
    [CrossRef]
  7. V. N. Mahajan, "Imaging with obscured pupils," Opt. Lett. 1, 128-129 (1977).
    [CrossRef] [PubMed]
  8. J. E. Harvey and C. Ftaclas, "Diffraction effects of telescope secondary mirror spiders on various image-quality criteria," Appl. Opt. 34, 6337-6349 (1995).
    [CrossRef] [PubMed]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 61-113.
  10. A. Rosenfeld and A. C. Kak, Digital Picture Processing (Academic, 1982), Vol. 1, pp. 276-281.
  11. M. W. Haney, "Performance scaling in flat imagers," Appl. Opt. 45, 2901-2910 (2006).
    [CrossRef] [PubMed]
  12. P. B. Catrysse and B. A. Wandell, "Optical efficiency of image sensor pixels," J. Opt. Soc. Am. A 19, 1610-1620 (2002).
    [CrossRef]
  13. G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
    [CrossRef]
  14. J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.
  15. J. Janesick, "Lux transfer: complimentary metal oxide semiconductors versus charge-coupled devices," Opt. Eng. 41, 1203-1215 (2002).
    [CrossRef]

2006 (1)

2003 (2)

W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
[CrossRef]

2002 (3)

J. Janesick, "Lux transfer: complimentary metal oxide semiconductors versus charge-coupled devices," Opt. Eng. 41, 1203-1215 (2002).
[CrossRef]

V. Draganov and D. G. James, "Compact telescope for free-space communications," in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 151-158 (2002).
[CrossRef]

P. B. Catrysse and B. A. Wandell, "Optical efficiency of image sensor pixels," J. Opt. Soc. Am. A 19, 1610-1620 (2002).
[CrossRef]

1995 (2)

1977 (1)

1956 (1)

Adkisson, J.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
[CrossRef]

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
[CrossRef]

Cathey, W. T.

Catrysse, P. B.

Combs, D.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Dowski, E. R.

Draganov, V.

V. Draganov and D. G. James, "Compact telescope for free-space communications," in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 151-158 (2002).
[CrossRef]

Fainman, Y.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Ford, J. E.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Ftaclas, C.

Gambino, J.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 61-113.

Haney, M. W.

Harvey, J. E.

Hoague, T.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Jaffe, M.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

James, D. G.

V. Draganov and D. G. James, "Compact telescope for free-space communications," in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 151-158 (2002).
[CrossRef]

Janesick, J.

J. Janesick, "Lux transfer: complimentary metal oxide semiconductors versus charge-coupled devices," Opt. Eng. 41, 1203-1215 (2002).
[CrossRef]

Kak, A. C.

A. Rosenfeld and A. C. Kak, Digital Picture Processing (Academic, 1982), Vol. 1, pp. 276-281.

Kim, H.-C.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Kordonski, W.

W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).

Kyan, J.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Laikin, M.

M. Laikin, Lens Design (Dekker, 2001), Chap. 15.

Leidy, R.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Levy, U.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Mader, J.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Mahajan, V. N.

McGrath, D.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Morrison, R. L.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

O'Neill, E. L.

Rassel, R.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Rosenfeld, A.

A. Rosenfeld and A. C. Kak, Digital Picture Processing (Academic, 1982), Vol. 1, pp. 276-281.

Rutkowski, J.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Sackett, D.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Sekeres, A.

W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).

Shorey, A.

W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).

Stack, R. A.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Stancampiano, C. V.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

Tamayo, I.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Tremblay, E. J.

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
[CrossRef]

Wandell, B. A.

Appl. Opt. (3)

IEEE Trans. Electron Devices (1)

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. Janesick, "Lux transfer: complimentary metal oxide semiconductors versus charge-coupled devices," Opt. Eng. 41, 1203-1215 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

V. Draganov and D. G. James, "Compact telescope for free-space communications," in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 151-158 (2002).
[CrossRef]

Other (6)

E. J. Tremblay, J. Rutkowski, I. Tamayo, R. A. Stack, R. L. Morrison, D. Combs, J. Mader, H.-C. Kim, U. Levy, Y. Fainman, and J. E. Ford, "Ultrathin folded imager," in OSA Topical Meeting on Computational Optical Sensing and Imaging (Optical Society of America, 2005).

W. Kordonski, A. Shorey, and A. Sekeres, "New magnetically assisted finishing method: material removal with magnetorheological fluid jet," in Optical Manufacturing and Testing, V. H. P. Stahl, ed., Proc. SPIE 5180, 107-114 (2003).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 61-113.

A. Rosenfeld and A. C. Kak, Digital Picture Processing (Academic, 1982), Vol. 1, pp. 276-281.

J. Adkisson, J. Gambino, T. Hoague, M. Jaffe, J. Kyan, R. Leidy, D. McGrath, R. Rassel, D. Sackett, and C. V. Stancampiano, "Optimization of Cu interconnect layers for 2.7 μm pixel image sensor technology: fabrication, modeling, and optical results." in Proceedings of 2005 IEEE Workshop on CCD and Advanced Image Sensors (IEEE, 2005), pp. 1-4.

M. Laikin, Lens Design (Dekker, 2001), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Conventional compound refractive lens. (b) Annular folded optics concept.

Fig. 2
Fig. 2

OD versus obscuration to maintain constant collection aperture area (effective diameter) compared to an unobscured lens.

Fig. 3
Fig. 3

Diffraction-limited incoherent (a) PSF and (b) MTF of a 60 mm circular aperture with different levels of central obscuration (% OD).

Fig. 4
Fig. 4

Relative energy collection versus spatial frequency for various circular apertures. (a) Comparison of different obscurations with fixed OD ( 60 m m ) . (b) Comparison of different diameters with fixed obscuration (50%). Plots are normalized to the unobscured 60 mm optic. All the simulations have an EFL of 35 mm.

Fig. 5
Fig. 5

Relative energy collection versus spatial frequency for eightfold and fourfold designs matched to a 35 mm f∕1.4 conventional lens up to 156 cycles / mm .

Fig. 6
Fig. 6

FOV versus equivalent aperture diameter for several multiple-fold designs.

Fig. 7
Fig. 7

Diffraction limited relative energy collection versus spatial frequency comparing a conventional fast miniature lens (f 1, EFL = 5 m m ), a fourfold design (EFL = 22 m m ) and an eightfold design (EFL = 35 m m ); all of 5 m m total thickness.

Fig. 8
Fig. 8

(a) Eightfold imager in C a F 2 schematic, (b) calculated monochromatic MTF, (c) simulated monochromatic ( 588 n m ) geometric spot diagram, and (d) simulated broad-spectrum (486, 588, 656 n m ) geometric spot diagram showing 8 μ m lateral color ( ± 1 pixel at field stop).

Fig. 9
Fig. 9

Camera prototype fabrication and integration. (a) Diamond turned optic before coating, (b) silver-coated front surface with annular entrance pupil, (c) coated back surface, (d) active alignment of CMOS sensor, (e) fully functional fixed-focus camera, and (f) fixed-focus camera and electronics packaged in a plastic enclosure.

Fig. 10
Fig. 10

(a) Image taken with eightfold camera prototype and (b) Zemax predicted image.

Fig. 11
Fig. 11

Conventional and eightfold image comparison. The dual camera setup (a) is used to image (b) the staggered resolution charts. (c) and (d) show the images taken with the conventional camera and eightfold camera, respectively.

Fig. 12
Fig. 12

Measured in-focus MTF (optics + sensor) comparison of the eightfold imager and the conventional comparison imager using identical CMOS image sensors.

Tables (2)

Tables Icon

Table 1 Size Comparisons to Match Light Collection Aperture Area to an f 1.4 35 mm Conventional Lens a

Tables Icon

Table 2 Size Comparisons to Match Relative Energy Collection to a f ∕1.4 35 mm Conventional Lens up to 156 cycles∕mm a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d e f f = d o u t e r 1 o 2 ,
I ( r ) = ( 1 λ z ) 2 | ( π a 2 2 ) [ 2 J 1 ( k a 2 r / z ) k a 2 r / z ] ( π a 1 2 ) [ 2 J 1 ( k a 1 r / z ) k a 1 r / z ] | 2 .
M T F = P ( x + ( λ z i f x / 2 ) , y + ( λ z i f y / 2 ) ) P ( x ( λ z i f x / 2 ) , y ( λ z i f y / 2 ) ) d x d y P ( x , y ) d x d y .
T E F L n s N ,

Metrics