Abstract

We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span 308310nm with a resolution of 0.03nm, even though an extended source (extent of 2×107m2rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. M. Harlander, F. L. Roesler, and S. Chakrabarti, "Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV," Proc. SPIE 1344, 120-131 (1990).
    [Crossref]
  2. J. M. Harlander, R. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
    [Crossref]
  3. J. M. Harlander, F. L. Roesler, C. Englert, J. Cardon, M. Stevens, R. Reynolds, and K. Jaehnig, "Spatial heterodyne spectroscopy: a non-scanned method for high-resolution interference spectroscopy," Fourier Transform Spectroscopy Conference Proceedings, Quebec City, Canada (2003), 191-196.
  4. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, and J. Wimperis, "Spatial heterodyne spectroscopy for high spectral resolution space-based remote sensing," Opt. Photonics News 15, 46-51 (2004).
  5. J. M. Harlander, F. L. Roesler, C. R. Englert, J. Cardon, R. Conway, C. Brown, and J. Wimperis, "Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1," Appl. Opt. 42, 2829-2834 (2003).
    [Crossref] [PubMed]
  6. C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, "Correction of phase distortion in "spatial heterodyne spectroscopy," Appl. Opt. 43, 6680-6687 (2004).
    [Crossref]
  7. J. Harlander, F. L. Roesler, and R. J. Reynolds, "The field-widened SHS: an extremely high etendue, unscanned, michelson-based spectrometer," in Proceedings of the Astronomical Society of the Pacific 71, 336-337 (1995).
  8. S. Younger, "OH absorption spectroscopy to investigate light-load HCCI combustion," University of Wisconsin-Madison, Masters (2005).
  9. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Comb. Inst. 31, 783-790 (2007).
    [Crossref]
  10. S. Fendel, R. Freis, and B. Schrader, "Reduction of the multiplex disadvantage in NIR FT Raman spectroscopy by the use of interference filters," J. Mol. Struct. 410-411, 531-534 (1997).
    [Crossref]
  11. L. S. Rothman, D. Jacquemart, A. Barbe, C. D. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vaner Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [Crossref]
  12. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, "Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra," Appl. Opt. 46, 4117-4124 (2007).
    [Crossref] [PubMed]
  13. L. A. Kranendonk, S. T. Sanders, X. An, A. W. Caswell, R. E. Herold, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, "High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy," Opt. Express 15, 15115-15128 (2007).
    [Crossref] [PubMed]
  14. P. Jacquinot, "The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons," J. Opt. Soc. Am. 44, 761-765 (1954).
    [Crossref]

2007 (3)

2005 (1)

L. S. Rothman, D. Jacquemart, A. Barbe, C. D. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vaner Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[Crossref]

2004 (2)

C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, "Correction of phase distortion in "spatial heterodyne spectroscopy," Appl. Opt. 43, 6680-6687 (2004).
[Crossref]

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, and J. Wimperis, "Spatial heterodyne spectroscopy for high spectral resolution space-based remote sensing," Opt. Photonics News 15, 46-51 (2004).

2003 (1)

1997 (1)

S. Fendel, R. Freis, and B. Schrader, "Reduction of the multiplex disadvantage in NIR FT Raman spectroscopy by the use of interference filters," J. Mol. Struct. 410-411, 531-534 (1997).
[Crossref]

1995 (1)

J. Harlander, F. L. Roesler, and R. J. Reynolds, "The field-widened SHS: an extremely high etendue, unscanned, michelson-based spectrometer," in Proceedings of the Astronomical Society of the Pacific 71, 336-337 (1995).

1992 (1)

J. M. Harlander, R. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
[Crossref]

1990 (1)

J. M. Harlander, F. L. Roesler, and S. Chakrabarti, "Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV," Proc. SPIE 1344, 120-131 (1990).
[Crossref]

1954 (1)

Appl. Opt. (3)

Astrophys. J. (1)

J. M. Harlander, R. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
[Crossref]

J. Mol. Struct. (1)

S. Fendel, R. Freis, and B. Schrader, "Reduction of the multiplex disadvantage in NIR FT Raman spectroscopy by the use of interference filters," J. Mol. Struct. 410-411, 531-534 (1997).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, C. D. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vaner Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[Crossref]

Opt. Express (1)

Opt. Photonics News (1)

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, and J. Wimperis, "Spatial heterodyne spectroscopy for high spectral resolution space-based remote sensing," Opt. Photonics News 15, 46-51 (2004).

Proc. Comb. Inst. (1)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Comb. Inst. 31, 783-790 (2007).
[Crossref]

Proc. SPIE (1)

J. M. Harlander, F. L. Roesler, and S. Chakrabarti, "Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV," Proc. SPIE 1344, 120-131 (1990).
[Crossref]

Other (3)

J. M. Harlander, F. L. Roesler, C. Englert, J. Cardon, M. Stevens, R. Reynolds, and K. Jaehnig, "Spatial heterodyne spectroscopy: a non-scanned method for high-resolution interference spectroscopy," Fourier Transform Spectroscopy Conference Proceedings, Quebec City, Canada (2003), 191-196.

J. Harlander, F. L. Roesler, and R. J. Reynolds, "The field-widened SHS: an extremely high etendue, unscanned, michelson-based spectrometer," in Proceedings of the Astronomical Society of the Pacific 71, 336-337 (1995).

S. Younger, "OH absorption spectroscopy to investigate light-load HCCI combustion," University of Wisconsin-Madison, Masters (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) OH transmission data measured using a deuterium lamp and grating spectrometer recorded in an engine running in HCCI mode on 10 mg n-heptane per cycle with a 9.5 cm optical path length. This spectrum corresponds to a piston position of 6.2 CAD aTDC, and represents a 200-cycle average. Within the same measurement, similar spectra were recorded at other crank angles to allow us to monitor the evolution of OH in the engine.

Fig. 2
Fig. 2

(Color online) Schematic of the experimental arrangement including the SHS instrument (shown in the box labeled “SHS”). The goal of this experiment is to measure absorption spectra of OH contained in the combustion gases. The axis of the beam is 22.5 mm above the height of the flame front and the beam diameter as it exits the combustion zone is 11 mm .

Fig. 3
Fig. 3

(Color online) Image of the interferogram measured by the camera shown in Fig. 2. Post-processing steps listed in the text have been applied to produce this image from the raw images.

Fig. 4
Fig. 4

(Color online) Comparison of an OH spectrum simulated using hitran to an OH spectrum measured using SHS in the ethylene-air flame. The simulation shown is chosen manually, but in the future selections can be done computationally as described elsewhere [12]. The simulation is smoothed to match the resolution of the SHS instrument measurement.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C = extent FP extent grat_spec = π β tan θ ,
R o = λ Δ λ ,
extent grat_spec = S β λ D 2 R o .
S D 2 = A grating ( 2 sin θ λ ) ,
extent grat_spec = A grating β 2 sin θ R o .
A grating = A i cos θ ,
extent grat_spec = A i β 2 sin θ R o cos θ ,
extent grat_spec = A i β 2 tan θ R o .
extent FP = 2 π R o A i .
C = extent FP extent grat_spec = π β tan θ ,

Metrics