Abstract

We report on the analysis and experimental validation of the strain sensitivity dependences of a fiber Bragg grating written in standard optical fiber when combined with fused tapers. By controlling the difference between the cross sections of the fused taper and the Bragg grating, the strain sensitivity of the Bragg wavelength can be changed by acting on the gauge length. The strain sensing characteristics of an interferometric structure formed by fabricating a fused taper in the middle of a fiber Bragg grating are also reported.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y.-L. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  2. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  3. O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integ. Opt. 24, 227-244 (2005).
    [CrossRef]
  4. S. W. James, M. L. Dockney, and F. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
    [CrossRef]
  5. O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Simultaneous measurement of strain and temperature using Bragg gratings in a twisted configuration," J. Opt. A 7, 427-430 (2005).
    [CrossRef]
  6. O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, "Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination," Meas. Sci. Technol. 16, 984-988 (2005).
    [CrossRef]
  7. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, "Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre," Electron. Lett. 31, 823-825 (1995).
    [CrossRef]
  8. D. Weichong, T. Xiaoming, and T. Hwa-yaw, "Fibre Bragg grating cavity sensors for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
    [CrossRef]
  9. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
    [CrossRef]
  10. M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube," Opt. Fiber Technol. 3, 194-196 (1997).
    [CrossRef]
  11. V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and J. Marquez, "Temperature-insensitive strain measurement using differential double Bragg grating technique," Opt. Laser Technol. 33, 43-46 (2001).
    [CrossRef]

2005

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integ. Opt. 24, 227-244 (2005).
[CrossRef]

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Simultaneous measurement of strain and temperature using Bragg gratings in a twisted configuration," J. Opt. A 7, 427-430 (2005).
[CrossRef]

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, "Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination," Meas. Sci. Technol. 16, 984-988 (2005).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
[CrossRef]

2003

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

2001

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and J. Marquez, "Temperature-insensitive strain measurement using differential double Bragg grating technique," Opt. Laser Technol. 33, 43-46 (2001).
[CrossRef]

1999

D. Weichong, T. Xiaoming, and T. Hwa-yaw, "Fibre Bragg grating cavity sensors for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

1997

Y.-L. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube," Opt. Fiber Technol. 3, 194-196 (1997).
[CrossRef]

1996

S. W. James, M. L. Dockney, and F. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
[CrossRef]

1995

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, "Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre," Electron. Lett. 31, 823-825 (1995).
[CrossRef]

Electron. Lett.

S. W. James, M. L. Dockney, and F. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
[CrossRef]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, "Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre," Electron. Lett. 31, 823-825 (1995).
[CrossRef]

Fiber Integ. Opt.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integ. Opt. 24, 227-244 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Weichong, T. Xiaoming, and T. Hwa-yaw, "Fibre Bragg grating cavity sensors for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
[CrossRef]

J. Opt. A

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Simultaneous measurement of strain and temperature using Bragg gratings in a twisted configuration," J. Opt. A 7, 427-430 (2005).
[CrossRef]

Meas. Sci. Technol.

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, "Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination," Meas. Sci. Technol. 16, 984-988 (2005).
[CrossRef]

Y.-L. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Opt. Fiber Technol.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube," Opt. Fiber Technol. 3, 194-196 (1997).
[CrossRef]

Opt. Laser Technol.

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and J. Marquez, "Temperature-insensitive strain measurement using differential double Bragg grating technique," Opt. Laser Technol. 33, 43-46 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the sensing head based on a single FBG in series with a fused taper.

Fig. 2
Fig. 2

Relationship between the normalized strain coefficient (relative to the case of the nontapered fiber section) with the total length of the sensing head.

Fig. 3
Fig. 3

Fused taper diameter versus number of electric discharges.

Fig. 4
Fig. 4

(Color online) Strain response of the FBG in a sensing head with different gauge lengths and in series with a fiber fused taper with diameters of (a) 105, (b) 90, and (c) 60 μ m .

Fig. 5
Fig. 5

Experimental and theoretical FBG strain sensitivity versus total length of the sensing head for different taper diameters.

Fig. 6
Fig. 6

Geometry of the interferometric structure based on the fabrication of a fused taper at the middle of a FBG.

Fig. 7
Fig. 7

Spectral response of the Bragg grating and of the structure formed after fabrication of the fused taper at the middle of the grating.

Fig. 8
Fig. 8

(Color online) Relationship between the visibility type parameter ( R 1 R 2 ) / ( R 1 + R 2 ) and the strain for two gauge lengths (100 and 500   mm ).

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

125 μ m
L total = L FBG + L taper + L fiber
( λ FBG )
Δ λ FBG = κ ε ( FBG ) ε FBG ,
κ ε ( FBG )
ε FBG
Δ λ FBG
Δ ε FBG E A FBG = Δ ε taper E A taper ,
A FBG
A taper
ε FBG ε taper = ( d taper d FBG ) 2 ,
d FBG
d taper
ε FBG = Δ L FBG L FBG , ε taper = Δ L taper L taper , ε fiber = Δ L fiber L fiber ,
L FBG
L taper
L fiber
Δ L FBG
Δ L taper
Δ L fiber
ε = Δ L FBG + Δ L taper + Δ L fiber L FBG + L taper + L fiber .
ε ( FBG ) = L FBG + L taper + L fiber L FBG + L taper ( d FBG d taper ) 2 + L fiber ε .
Δ λ FBG = κ ε ( FBG ) L FBG + L taper + L fiber L FBG + L taper ( d FBG d taper ) 2 + L fiber ε .
Δ λ FBG = κ ε ( FBG ) L FBG + i = 1 N L t a p e r i + L fiber L FBG + i = 1 N L t a p e r i ( d FBG d t a p e r i ) 2 + L fiber ε .
Δ λ FBG = κ ε ε ,
κ ε
κ ε = κ ε ( FBG ) L FBG + L taper + L fiber L FBG + L taper ( d FBG d taper ) 2 + L fiber .
κ ε ( FBG )
10   mm
50   mm
248   nm
( λ B 1550   nm )
9   mA
60 μ m
500 μ m
0.1   dB
100   nm
1550   nm
0.05   nm
60 μ m
L = 0.1
0.4   m
60 μ m
0.5   m
κ ε
10   mm
6.8   mm
( R 1 R 2 ) / ( R 1 + R 2 )
R 1
R 2
( 1000 μ ε )
1.94 × 10 4 μ ε 1 ( 100   mm )
1.78 × 10 4 μ ε 1
( 500   mm )
60 μ m
23 %
60 μ m
( R 1 R 2 ) / ( R 1 + R 2 )
500   mm

Metrics