Abstract

We describe a photodetector array based on photoconductance-monitoring by four-point probing. This detection scheme is aimed specifically at detecting changes within a speckle or microscopic fringes within a larger nonuniform optical intensity distribution. One specific application is the detection of lateral displacements of these speckles or fringes, for example, in laser light reflected from optically rough vibrating surfaces. With a prototype, we have detected subnanometer surface displacements interferometrically. We also demonstrate speckle-based, noninterferometric detection of a guitar body's vibrations at a standoff distance of 6  m with nanowatt power. We observe and explain the prototype's limited frequency response by considering space-charge effects. This detection scheme is most useful in low-power, low-frequency applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Heinz and E. Garmire, "Optical vibration detection with a photoconductance monitoring array," Appl. Phys. Lett. 84, 3196-3198 (2004).
    [CrossRef]
  2. P. Heinz and E. Garmire, "Low-power optical vibration detection by photoconductance-monitoring with a laser speckle pattern," Opt. Lett. 30, 3027-3029 (2005).
    [CrossRef] [PubMed]
  3. P. K. Rastogi, "Principles of holographic interferometry and speckle metrology," in Photomechanics, Vol. 77 of Topics in Applied Physics, P.K.Rastogi, ed. (Springer, 2000), pp. 103-150.
    [CrossRef]
  4. J. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectrics Freq. Control 33, 485-499 (1986).
    [CrossRef]
  5. R. J. Dewhurst and Q. Shan, "Optical remote measurement of ultrasound," Meas. Sci. Technol. 10, R139-R168 (1999).
    [CrossRef]
  6. S. M. Sze, Semiconductor Sensors (Wiley, 1994).
  7. A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
    [CrossRef]
  8. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
    [CrossRef]
  9. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr," Opt. Lett. 15, 1239-1241 (1990).
    [CrossRef] [PubMed]
  10. D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, "Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts," Opt. Lett. 24, 342-344 (1999).
    [CrossRef]
  11. J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
    [CrossRef]
  12. A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
    [CrossRef]
  13. J. Santana and B. K. Jones, "Semi-insulating GaAs as a relaxation semiconductor," J. Appl. Phys. 83, 7699-7705 (1998).
    [CrossRef]
  14. G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer, 1988), Chap. 3, pp. 75-98.
  15. P. Günter and J.-P. Huignard, "Photorefractive effects and materials," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P.Günter and J.-P.Huignard, eds. (Springer, 1988), Chap. 2, pp. 7-74.
  16. S. I. Stepanov, "Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques," Appl. Opt. 33, 915-920 (1994).
    [PubMed]
  17. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).
  18. D. D. Nolte, "Photorefractive transport and multi-wave mixing," in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, 1995), Chap. 1, pp. 1-66.
  19. L.-J. Cheng and A. Partovi, "Index-grating lifetime in photorefractive GaAs," Appl. Opt. 27, 1760-1763 (1988).
    [CrossRef] [PubMed]
  20. G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
    [CrossRef]
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]
  22. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
    [CrossRef]
  23. G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.
  24. P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
    [CrossRef]
  25. S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
    [CrossRef]

2005

2004

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Heinz and E. Garmire, "Optical vibration detection with a photoconductance monitoring array," Appl. Phys. Lett. 84, 3196-3198 (2004).
[CrossRef]

2003

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

2000

P. K. Rastogi, "Principles of holographic interferometry and speckle metrology," in Photomechanics, Vol. 77 of Topics in Applied Physics, P.K.Rastogi, ed. (Springer, 2000), pp. 103-150.
[CrossRef]

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

1999

1998

J. Santana and B. K. Jones, "Semi-insulating GaAs as a relaxation semiconductor," J. Appl. Phys. 83, 7699-7705 (1998).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

1997

1995

D. D. Nolte, "Photorefractive transport and multi-wave mixing," in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, 1995), Chap. 1, pp. 1-66.

1994

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

S. M. Sze, Semiconductor Sensors (Wiley, 1994).

S. I. Stepanov, "Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques," Appl. Opt. 33, 915-920 (1994).
[PubMed]

1991

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

1990

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr," Opt. Lett. 15, 1239-1241 (1990).
[CrossRef] [PubMed]

1988

L.-J. Cheng and A. Partovi, "Index-grating lifetime in photorefractive GaAs," Appl. Opt. 27, 1760-1763 (1988).
[CrossRef] [PubMed]

G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer, 1988), Chap. 3, pp. 75-98.

P. Günter and J.-P. Huignard, "Photorefractive effects and materials," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P.Günter and J.-P.Huignard, eds. (Springer, 1988), Chap. 2, pp. 7-74.

1986

J. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectrics Freq. Control 33, 485-499 (1986).
[CrossRef]

1985

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

1971

J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).

Apostol, I.

Bacher, G. D.

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

Cheng, L.-J.

Chiao, M. P.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, "Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts," Opt. Lett. 24, 342-344 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

Coy, J. A.

de Montmorillon, L.-A.

Delaye, P.

Dewhurst, R. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

R. J. Dewhurst and Q. Shan, "Optical remote measurement of ultrasound," Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

Drolet, D.

Dunning, G. J.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, "Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts," Opt. Lett. 24, 342-344 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

Elliott, G.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Garmire, E.

P. Heinz and E. Garmire, "Low-power optical vibration detection by photoconductance-monitoring with a laser speckle pattern," Opt. Lett. 30, 3027-3029 (2005).
[CrossRef] [PubMed]

P. Heinz and E. Garmire, "Optical vibration detection with a photoconductance monitoring array," Appl. Phys. Lett. 84, 3196-3198 (2004).
[CrossRef]

Günter, P.

P. Günter and J.-P. Huignard, "Photorefractive effects and materials," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P.Günter and J.-P.Huignard, eds. (Springer, 1988), Chap. 2, pp. 7-74.

Hatrick, D.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

Heinz, P.

P. Heinz and E. Garmire, "Low-power optical vibration detection by photoconductance-monitoring with a laser speckle pattern," Opt. Lett. 30, 3027-3029 (2005).
[CrossRef] [PubMed]

P. Heinz and E. Garmire, "Optical vibration detection with a photoconductance monitoring array," Appl. Phys. Lett. 84, 3196-3198 (2004).
[CrossRef]

Huignard, J.-P.

P. Günter and J.-P. Huignard, "Photorefractive effects and materials," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P.Günter and J.-P.Huignard, eds. (Springer, 1988), Chap. 2, pp. 7-74.

Jin, F.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Jones, B. K.

J. Santana and B. K. Jones, "Semi-insulating GaAs as a relaxation semiconductor," J. Appl. Phys. 83, 7699-7705 (1998).
[CrossRef]

Khurgin, J.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Klein, M. B.

Lam, J. F.

G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer, 1988), Chap. 3, pp. 75-98.

Lee, J.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Meyers, J. F.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Mitchell, P. V.

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

Monchalin, J.

J. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectrics Freq. Control 33, 485-499 (1986).
[CrossRef]

Monchalin, J.-P.

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

Murfin, A. S.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

Nolte, D. D.

O'Meara, T. R.

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).

Partovi, A.

Pepper, D. M.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, "Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts," Opt. Lett. 24, 342-344 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
[CrossRef]

Popa, D.

Rajbenbach, H.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
[CrossRef]

Rastogi, P. K.

P. K. Rastogi, "Principles of holographic interferometry and speckle metrology," in Photomechanics, Vol. 77 of Topics in Applied Physics, P.K.Rastogi, ed. (Springer, 2000), pp. 103-150.
[CrossRef]

Rodriguez, P.

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Roosen, G.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Santana, J.

J. Santana and B. K. Jones, "Semi-insulating GaAs as a relaxation semiconductor," J. Appl. Phys. 83, 7699-7705 (1998).
[CrossRef]

Shan, Q.

R. J. Dewhurst and Q. Shan, "Optical remote measurement of ultrasound," Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

Soden, R. A. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

Sokolov, I. A.

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr," Opt. Lett. 15, 1239-1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
[CrossRef]

Stepanov, S.

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Stepanov, S. I.

Sze, S. M.

S. M. Sze, Semiconductor Sensors (Wiley, 1994).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Trivedi, S.

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Trofimov, G. S.

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr," Opt. Lett. 15, 1239-1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
[CrossRef]

Valley, G. C.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
[CrossRef]

G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer, 1988), Chap. 3, pp. 75-98.

Vlad, V. I.

von Bardeleben, H. J.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
[CrossRef]

Wang, C.-C.

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Rodriguez, S. Trivedi, F. Jin, C.-C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, "Pulsed-laser vibrometer using photoelectromotive-force sensors," Appl. Phys. Lett. 83, 1893-1895 (2003).
[CrossRef]

S. Stepanov, P. Rodriguez, S. Trivedi, and C.-C. Wang, "Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector," Appl. Phys. Lett. 84, 446-448 (2004).
[CrossRef]

P. Heinz and E. Garmire, "Optical vibration detection with a photoconductance monitoring array," Appl. Phys. Lett. 84, 3196-3198 (2004).
[CrossRef]

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, "Mobility-lifetime product of photoexcited electrons in GaAs," Appl. Phys. Lett. 56, 364-366 (1990).
[CrossRef]

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectrics Freq. Control

J. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectrics Freq. Control 33, 485-499 (1986).
[CrossRef]

J. Appl. Phys.

J. Santana and B. K. Jones, "Semi-insulating GaAs as a relaxation semiconductor," J. Appl. Phys. 83, 7699-7705 (1998).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, "Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors," J. Appl. Phys. 68, 2216-2225 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

R. J. Dewhurst and Q. Shan, "Optical remote measurement of ultrasound," Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, "Laser-ultrasound detection systems: a comparative study with Rayleigh waves," Meas. Sci. Technol. 11, 1208-1219 (2000).
[CrossRef]

Opt. Lett.

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O'Meara, "Optimizing the photo induced-emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing," in International Trends in Optics, R. E. Green, ed. (Plenum, 1998). Vol. VIII, pp. 21-26.

J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).

D. D. Nolte, "Photorefractive transport and multi-wave mixing," in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, 1995), Chap. 1, pp. 1-66.

P. K. Rastogi, "Principles of holographic interferometry and speckle metrology," in Photomechanics, Vol. 77 of Topics in Applied Physics, P.K.Rastogi, ed. (Springer, 2000), pp. 103-150.
[CrossRef]

S. M. Sze, Semiconductor Sensors (Wiley, 1994).

G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer, 1988), Chap. 3, pp. 75-98.

P. Günter and J.-P. Huignard, "Photorefractive effects and materials," in Photorefractive Effects and Their Applications I, Vol. 61 of Topics in Applied Physics, P.Günter and J.-P.Huignard, eds. (Springer, 1988), Chap. 2, pp. 7-74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the four-point photoconductance-monitoring array. A current is injected and extracted through injection contacts IC1 and IC2, while monitoring contacts MC1 through MC5 are used to monitor the voltage drop across active regions 1 through 4. The contacts and active regions are located on an isolation mesa. Each element is smaller than or comparable to a single speckle or fringe.

Fig. 2
Fig. 2

(Color online) Predicted SNR for parameters as in our prototype, a fractional change in incident intensity of 0.01, an injected current of 0.1 μ A , and a 10   kHz bandwidth.

Fig. 3
Fig. 3

(Color online) Response of one FPPC channel and photodiode to a chopper blade sweeping once across a He–Ne laser beam. The FPPC device is AC coupled; the photodiode is DC coupled. The inset (with a vertical scale of 80   mV top-to-bottom and unchanged time scale) shows diffraction features preceding the blocking of the beam; the superior spatial resolution of the smaller FPPC device is evident. The inset trace had to be acquired separately due to the oscilloscope's limited dynamic range. The traces have been shifted vertically for clarity.

Fig. 4
Fig. 4

Dependence of peak-to-peak output on modulation depth m I for three FPPC channels, with a spatially fixed intensity distribution modulated at 4   kHz . The background intensity was 4 mW / cm 2 . Each data point represents the average of 128 oscilloscope acquisitions. The lines represent linear least-squares fits to the data.

Fig. 5
Fig. 5

(Color online) Experimental frequency response of one FPPC channel for fixed spatial distribution at three different background intensity levels and identical temporal modulation depth m I 0.04 . Each data point represents the average of 128 oscilloscope acquisitions. For each response curve, the largest recorded response was taken as the 0 dB reference.

Fig. 6
Fig. 6

Schematic of the interferometric setup (not to scale; tilt angles exaggerated for clarity).

Fig. 7
Fig. 7

Example of FPPC output in an interferometric configuration, for a surface displacement of 1   nm . The noisy trace represents a single oscilloscope acquisition; the smooth trace represents the average over 128 oscilloscope successive acquisitions.

Fig. 8
Fig. 8

FPPC output dependence on surface displacement in an interferometric configuration, for one of the four channels. Each data point represents the average over 128 oscilloscope acquisitions. The line represent a linear fit to the data.

Fig. 9
Fig. 9

Experimental setup for the noninterferometric detection of a guitar's vibrations at a distance of 6 m (not to scale).

Fig. 10
Fig. 10

FFT of laser speckle changes in response to a guitar's vibrations.

Tables (2)

Tables Icon

Table 1 Characteristics of Detection Methods a

Tables Icon

Table 2 Comparison of Detection Techniques a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

P = Δ I p A .
S = σ w l d .
S = S d + S p h .
σ p h = q μ n p h ,
n p h = 1 d η I p h ν τ p ,
σ p h = μ τ p q k B T q η I p h ν ,
I min = σ d μ τ p q k B T q η h ν .
V = J i n S d + A I p ,
A = w l μ τ p q η h ν .
Δ V ( t 1 ; t 0 ) = t 0 t 1 d V ( t ) d t d t = t 0 t 1 d V ( t ) d I p d I p d g d g ( t ) d t d t .
I p ( x ) = I 0 [ 1 + m   sin ( K x + ϕ 0 ) ] ,
I p ( x ) = I 0 { 1 + m Λ π l   sin ( l π Λ ) sin ( K x + ϕ 0 ) } .
Δ V = t 0 t 1 C ( t ) K d g ( t ) d t d t ,
C ( t ) = J i n A I 0 m Λ π l   sin ( l π Λ ) cos ( ϕ 0 ) { S d + A I 0 [ 1 + m Λ π l   sin ( l π Λ ) sin ( ϕ 0 K g ( t ) ) ] } 2 .
C = J i n A I 0 m   cos ( ϕ 0 ) { S d + A I 0 [ 1 + m   sin ( ϕ 0 ) ] } 2 ,
Δ V = C K [ g ( t 1 ) g ( t 0 ) ] ,
C = J i n m A I 0 .
J i n = V p s R s + R d e v .
V D 0 = k B T q   ln ( 1 + n p n d ) ,
τ s c τ d ( 1 + K 2 L D 2 + ( K μ τ p E ) 2 )
SNR   = ( Δ V ) 2 4 k B T R B + 2 q J i n B R 2 + ( Δ V ) 2 2 B h ν / w l η I p + 25 B ( nV ) 2 .
n ¯ = A I p h ν 1 2 B .
B < A f I p 2 h ν X ,
ϕ 0 ( m ) = ϕ 0 ( 1 ) + 2 π ( m 1 ) Λ a Λ .

Metrics