Abstract

We have investigated the dispersion and birefringence of an irregularly microstructured fiber with an elliptic silica core and irregular airholes. The polarization-dependent output power through the fiber reveals two well-defined principal-axis modes despite the irregularity of airholes. The dispersion of the fiber is measured in the range of 680 to 1000nm using the Mach–Zehnder interferometric technique with sub-10 fs laser pulses, which yield two zero dispersion wavelengths at 683 and 740nm for the two principal modes, respectively. The birefringence measured using the wavelength scanning method is about 0.0055 at 800nm. It is also demonstrated that this irregularly microstructured fiber with high birefringence and short zero dispersion wavelength is useful for the one-octave-spanning supercontinuum generation suitable for an f2f interferometric system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibers,” Nature (London) 424, 847–851 (2003).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  3. A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtopulse pumping,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  5. D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  6. H. Kano, H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13, 1322–1327 (2005).
    [CrossRef] [PubMed]
  7. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
    [CrossRef] [PubMed]
  8. Th. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
    [CrossRef]
  9. J. Jasapara, T. H. Her, R. Bise, R. Windeler, D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20, 1611–1615 (2003).
    [CrossRef]
  10. A. Gosteva, M. Haiml, R. Paschotta, U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22, 1868–1873 (2005).
    [CrossRef]
  11. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004).
    [CrossRef] [PubMed]
  12. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallanher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zentano, K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
    [CrossRef] [PubMed]
  13. F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [CrossRef]
  14. K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).
  15. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
    [CrossRef]
  16. T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
    [CrossRef]
  17. G. Genty, M. Lehtonen, H. Ludvigsen, M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
    [CrossRef] [PubMed]
  18. M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 16, 6181–6192 (2005).
    [CrossRef]
  19. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
    [CrossRef]

2006 (1)

2005 (3)

2004 (3)

2003 (3)

J. Jasapara, T. H. Her, R. Bise, R. Windeler, D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20, 1611–1615 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature (London) 424, 847–851 (2003).
[CrossRef]

2002 (2)

2001 (4)

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

2000 (2)

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Aguirre, A. D.

Bang, O.

M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 16, 6181–6192 (2005).
[CrossRef]

Bise, R.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Carberry, J. P.

Chau, A. H. L.

Chen, X.

Coen, S.

Crowley, A. M.

DiGiovanni, D. J.

Fajardo, J. C.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Falk, P.

M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 16, 6181–6192 (2005).
[CrossRef]

Folkenberg, J. R.

Frosz, M. H.

M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 16, 6181–6192 (2005).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Gallanher, M. T.

Genty, G.

Goch, K. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Gosteva, A.

Haiml, M.

Hamaguchi, H.

Hansch, T. W.

Th. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Harvey, J. D.

Her, T. H.

Herrmann, J.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

Homoelle, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Husakou, A. V.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Iizuka, K.

K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).

Jakobsen, C.

Jasapara, J.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Kaivola, M.

Kano, H.

Keller, U.

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature (London) 424, 847–851 (2003).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtopulse pumping,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Koch, K. W.

Kopf, D.

Lederer, M.

Lehtonen, M.

Leonhardt, R.

Li, M.-J.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

G. Genty, M. Lehtonen, H. Ludvigsen, M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
[CrossRef] [PubMed]

T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Niemi, T.

T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

Nishizawa, N.

Ouzounov, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Paschotta, R.

Ranka, J. K.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Russell, P. St. J.

Seitz, W.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

Simonsen, H. R.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Stentz, A. J.

Udem, Th.

Th. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

Uusimaa, M.

T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

Venkataraman, N.

Wadsworth, W. J.

Webb, W. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

West, J. A.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Windeler, R.

Windeler, R. S.

Wood, W. A.

Zentano, L. A.

Zipfel, W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Niemi, M. Uusimaa, H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (London) (2)

J. C. Knight, “Photonic crystal fibers,” Nature (London) 424, 847–851 (2003).
[CrossRef]

Th. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

Opt. Commun. (1)

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Goch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (1)

K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM image of the cross section of the IMEF used in our experiment.

Fig. 2
Fig. 2

(Color online) Simulated profiles of the two fundamental guiding modes of the IMEF. Spatial distributions of power density are shown. Transverse-E-field vectors are indicated by red arrows: (a) long axis mode, whose polarization direction is parallel to the long axis of the elliptic core, and (b) short axis mode, whose polarization direction is parallel to the short axis of the elliptic core.

Fig. 3
Fig. 3

(Color online) (a) Near-field pattern and (b)–(c) far-field patterns of the guided modes of the IMEF. Contour of airholes in (a) is shown for the convenience. In (b) and (c), white arrows indicate the long axis of the elliptic core and the red arrows the E-field directions, respectively.

Fig. 4
Fig. 4

(Color online) Dependence of the measured output power on θ, the angle between the polarization of input pulse and the long axis of the core. Long and short axis modes are indicated by the cyan solid and blue dashed curves, respectively.

Fig. 5
Fig. 5

(Color online) Mach–Zehnder interferometry setup. LP: linear polarizer, M: mirror, BS: beam splitter, FI: Faraday isolator, HW: half-wave plate, PH: pinhole, L: lens.

Fig. 6
Fig. 6

(Color online) (a) Detected interference fringes obtained using the MZ interferometric method. Black curve shows the bandwidth of the sub-10 fs pulse, and the modified input pulse in the shorter wavelength region as shown in the gray line was used to get a clearer fringe pattern. Insets show the magnified fringe patterns of the boxed spectral regions. (b) Cyan circle and blue cross data points are measured time delays with the MZ interferometric method for the long axis mode and the short axis mode, respectively. Obtained dispersion parameters D are shown in the solid and dashed curves of corresponding colors.

Fig. 7
Fig. 7

(Color online) Interferometry setup of the wavelength scanning method. LP: linear polarizer, FI: Faraday isolator, HW: half-wave plate, L: lens.

Fig. 8
Fig. 8

(Color online) (a) Detected interference fringe measured using the wavelength scanning method. Fringe pattern from 750 to 770 nm is magnified in the inset. (b) Birefringence obtained using the wavelength scanning method. Experimental results and its linear fit are shown by the black dots and the red solid curve, respectively. For comparison, birefringence obtained from the MZ interferometric method is also shown by the green dashed curve. An 11.9 cm long IMEF was used for the measurement.

Fig. 9
Fig. 9

(Color online) (a) Supercontinuum spectra for the long and short axis modes of the IMEF that we have analyzed are shown in the cyan solid and blue dashed curves, respectively. (b) Spectrum of the input pulse of 30 fs width with 830 nm central wavelength and the modified SC spectrum for an f 2 f interferometric system are shown in the blue dashed and red solid curves, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E s = A s exp ( i β s l s i ω t ) and E r = A r exp ( i β r l r i ω t ) ,
I = | A s | 2 + | A r | 2 + 2 A s A r * cos Φ ,
τ = Φ ω = β s ω l s β r ω l r .
τ = β IME F ω L + const ,
B = λ ¯ 2 Δ λ L ,
B = n s ( λ ) n l ( λ ) = c { τ s ( λ ) τ l ( λ ) } L ,

Metrics