Abstract

We introduce and experimentally demonstrate a fiber-connectorized optical system based on the use of a fiber-loop mirror (FLM) to study both the optical transmissivity and the optical phase retardation of a material. Our approach to investigating the optical transmissivity of a test sample is by initially adjusting the optical powers at both FLM output ports to the extremum. A reference and the test sample are then placed one by one at one of the FLM output ports. For the optical phase retardation measurement, we propose placing a test sample inside the FLM and analyzing the ratio of the normalized optical powers from the two FLM output ports in order to eliminate the effect of unwanted optical losses. Our experimental proof of concept using three known zero-order wave plates as our test samples shows promising results that agree very well with our theoretical analysis. Key features include robustness, low optical loss, low polarization dependent loss, and ease of implementation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Henderson, "Optical spectrometers," Chap. 20 in Handbook of Optics, Vol. II, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995).
  2. D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
    [CrossRef]
  3. J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
    [CrossRef]
  4. D. Bo, Z. Qida, L. Feng, G. Tuan, Z. Lifang, L. Shuhong, and G. Hong, "Liquid-level sensor with a high-birefringence-fiber loop mirror," Appl. Opt. 45, 7767-7771 (2006).
    [CrossRef] [PubMed]
  5. E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
    [CrossRef]
  6. S. Sumriddetchkajorn and N. A. Riza, "Fiber-connectorized multiwavelength 2 × 2 switch structure using a fiber loop mirror," Opt. Commun. 175, 89-95 (2000).
    [CrossRef]
  7. B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
    [CrossRef]
  8. E. Simova and I. Golub, "π-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
    [CrossRef]
  9. E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photon. Technol. Lett. 15, 960-962 (2003).
    [CrossRef]
  10. K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.
  11. X. Lin, CASIX Inc., 20 Fuxing Street, Fuxing Investment District, Fuzhou, Fujian, 350014, China (personal communication, 2007).

2007

K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.

X. Lin, CASIX Inc., 20 Fuxing Street, Fuxing Investment District, Fuzhou, Fujian, 350014, China (personal communication, 2007).

2006

2005

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

2003

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photon. Technol. Lett. 15, 960-962 (2003).
[CrossRef]

2002

2000

S. Sumriddetchkajorn and N. A. Riza, "Fiber-connectorized multiwavelength 2 × 2 switch structure using a fiber loop mirror," Opt. Commun. 175, 89-95 (2000).
[CrossRef]

1998

B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
[CrossRef]

1996

J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

1995

B. Henderson, "Optical spectrometers," Chap. 20 in Handbook of Optics, Vol. II, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995).

1988

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

Anderson, P. A.

B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
[CrossRef]

Blake, J.

J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Bo, D.

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

De Carvalho, R. T.

J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Feng, L.

Golub, I.

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photon. Technol. Lett. 15, 960-962 (2003).
[CrossRef]

E. Simova and I. Golub, "π-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
[CrossRef]

Henderson, B.

B. Henderson, "Optical spectrometers," Chap. 20 in Handbook of Optics, Vol. II, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995).

Hong, G.

Karlsson, M.

B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
[CrossRef]

Katanyukunanon, K.

K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.

Lifang, Z.

Lin, X.

X. Lin, CASIX Inc., 20 Fuxing Street, Fuxing Investment District, Fuzhou, Fujian, 350014, China (personal communication, 2007).

Minasian, R. A.

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

Olson, B.-E.

B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
[CrossRef]

Qida, Z.

Riza, N. A.

S. Sumriddetchkajorn and N. A. Riza, "Fiber-connectorized multiwavelength 2 × 2 switch structure using a fiber loop mirror," Opt. Commun. 175, 89-95 (2000).
[CrossRef]

Shuhong, L.

Simova, E.

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photon. Technol. Lett. 15, 960-962 (2003).
[CrossRef]

E. Simova and I. Golub, "π-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
[CrossRef]

Srikhirin, T.

K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.

Sumriddetchkajorn, S.

K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.

S. Sumriddetchkajorn and N. A. Riza, "Fiber-connectorized multiwavelength 2 × 2 switch structure using a fiber loop mirror," Opt. Commun. 175, 89-95 (2000).
[CrossRef]

Tantaswadi, P.

J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Tuan, G.

Appl. Opt.

IEEE Photon. Technol. Lett.

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

B.-E. Olson, M. Karlsson, and P. A. Anderson, "Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method," IEEE Photon. Technol. Lett. 10, 997-999 (1998).
[CrossRef]

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photon. Technol. Lett. 15, 960-962 (2003).
[CrossRef]

IEEE Trans. Power Deliv.

J. Blake, P. Tantaswadi, and R. T. De Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

J. Lightwave Technol.

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

Opt. Commun.

S. Sumriddetchkajorn and N. A. Riza, "Fiber-connectorized multiwavelength 2 × 2 switch structure using a fiber loop mirror," Opt. Commun. 175, 89-95 (2000).
[CrossRef]

Opt. Lett.

Other

K. Katanyukunanon, S. Sumriddetchkajorn, and T. Srikhirin, "A study of optical phase retardation and absorption measurement by using a fiber loop mirror architecture," in Proceedings of the ECTI International Conference, Vol. 2 (Chiang Rai, Thailand, 2007), pp. 1069-1072.

X. Lin, CASIX Inc., 20 Fuxing Street, Fuxing Investment District, Fuzhou, Fujian, 350014, China (personal communication, 2007).

B. Henderson, "Optical spectrometers," Chap. 20 in Handbook of Optics, Vol. II, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Proposed FLM-based optical transmissivity and optical phase retardation measurement architecture. PD: photodetector; FPC: fiber-connectorized polarization controller; SMF: single mode optical fiber.

Fig. 2
Fig. 2

(Color online) Experimental setup.

Fig. 3
Fig. 3

(Color online) Measured optical transmissivity versus test wavelength for (a) WP1, (b) WP2, and (c) WP3 under an optical spectrometer structure (left plots), and our FLM-based optical transmissivity and optical phase retardation measurement architecture (right plots).

Fig. 4
Fig. 4

(Color online) (a) Measured normalized optical power ratio ( PR 1 ) versus orientation angle of the wave plate, and (b) measured optical phase retardation versus test wavelength.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P 1 = L cir12 L coupl,A L coupl,B ( 10 2 γ / 10 ) { 1 4 K ( 1 K ) | J | 2 } P in ,
P 2 = L cir12 L cir23 L coupl,A ( 10 2 γ / 10 ) { 4 K ( 1 K ) | J | 2 } P in ,
J = exp ( j Δ ϕ ) sin 2 θ + cos 2 θ ,
T = P sample / P ref .
P 1 n = P 1 / L coupl , B ,
P 2 n = P 2 / L cir 23 .
PR 1 = P 1 n P 1 n + P 2 n = 1 4 K ( 1 K ) | J | 2 ,
PR 2 = P 2 n P 1 n + P 2 n = 4 K ( 1 K ) | J | 2 .

Metrics