Abstract

The calculation model of fluorescence reabsorption and reemission with consideration of reflection on the boundary and material size using Monte Carlo method is proposed. To validate this stochastic model, experiments were conducted, and the calculated steady state spectra showed a good agreement with measurements. Using the absorption and fluorescence spectra of Yb-doped phosphate glass by careful measurements and corrections, we calculated the redshift in the observed fluorescence spectra and external quantum efficiency caused by fluorescence reabsorption and re-emission for the samples with the geometries of cylinder and cuboid. The calculation results show that the fluorescence reabsorption and re-emission have significant influence on the cooling efficiency. The calculation results also show that the cylinder with small waist beam incident (the incident light beam diameter is much less than the size of the sample, and goes through the center of the sample) is suitable for optical cooling.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, "Zwei bemerkungen über den unterschied von lumineszenz-undtemperatur-strahlung," Z. Phys. 57, 739-746 (1929).
    [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
    [CrossRef]
  3. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
    [CrossRef]
  4. S. R. Bowman and C.E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).
  5. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
    [CrossRef] [PubMed]
  6. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
    [CrossRef]
  7. B. Heeg and G. Rumbles, "Influence of radiative transfer on optical cooling in the condensed phase," J. Appl. Phys. 93, 1966-1973 (2003).
    [CrossRef]
  8. B. Heeg, Peter A. DeBarber, and G. Rumbles, "Influence of fluorescence reabsorption and trapping on solid-state optical cooling," Appl. Opt. 44, 3117-3124 (2005).
    [CrossRef] [PubMed]
  9. R. W. Olson, R. F. Loring, and M. D. Fayer, "Luminescent solar concentrators and the reabsorption problem," Appl. Opt. 20, 2934-2940 (1981).
    [CrossRef] [PubMed]
  10. I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
    [CrossRef]
  11. J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
    [CrossRef]
  12. B. L. Chadwick and R. J. S. Morrison, "Monte Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl," J. Chem. Soc. , Faraday Trans. 91, 1931-1934 (1995).
  13. M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
    [CrossRef]
  14. E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
    [CrossRef]
  15. M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
    [CrossRef]
  16. M. P. Hehlen, "Reabsorption artifacts in measured excited-state lifetimes of solids," J. Opt. Soc. Am. B 14, 1312-1318 (1997).
    [CrossRef]
  17. C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. , Mol., Opt. Phys. 40, 161-228 (1999).
  18. T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature," Opt. Lett. 24, 1041-1043 (1999).
    [CrossRef]
  19. G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
    [CrossRef]
  20. L. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).
  21. E. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136, A954-A957 (1964).
    [CrossRef]
  22. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
    [CrossRef]

2005 (1)

2003 (1)

B. Heeg and G. Rumbles, "Influence of radiative transfer on optical cooling in the condensed phase," J. Appl. Phys. 93, 1966-1973 (2003).
[CrossRef]

2001 (1)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

2000 (2)

S. R. Bowman and C.E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

1999 (2)

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. , Mol., Opt. Phys. 40, 161-228 (1999).

T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature," Opt. Lett. 24, 1041-1043 (1999).
[CrossRef]

1998 (1)

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

1997 (3)

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

M. P. Hehlen, "Reabsorption artifacts in measured excited-state lifetimes of solids," J. Opt. Soc. Am. B 14, 1312-1318 (1997).
[CrossRef]

1996 (1)

E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
[CrossRef]

1995 (3)

B. L. Chadwick and R. J. S. Morrison, "Monte Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl," J. Chem. Soc. , Faraday Trans. 91, 1931-1934 (1995).

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

1994 (1)

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

1991 (1)

L. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).

1981 (1)

1964 (1)

E. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

1929 (1)

P. Pringsheim, "Zwei bemerkungen über den unterschied von lumineszenz-undtemperatur-strahlung," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Berberan-Santos, M. N.

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
[CrossRef]

E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
[CrossRef]

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
[CrossRef]

Bowman, S. R.

S. R. Bowman and C.E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

Buchwald, M. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

Chadwick, B. L.

B. L. Chadwick and R. J. S. Morrison, "Monte Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl," J. Chem. Soc. , Faraday Trans. 91, 1931-1934 (1995).

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Cikanek, D.

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

DeBarber, Peter A.

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Epstein, R. I.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Fayer, M. D.

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

Gosnell, T. R.

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. , Mol., Opt. Phys. 40, 161-228 (1999).

T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature," Opt. Lett. 24, 1041-1043 (1999).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Grousson, R.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

Heeg, B.

B. Heeg, Peter A. DeBarber, and G. Rumbles, "Influence of fluorescence reabsorption and trapping on solid-state optical cooling," Appl. Opt. 44, 3117-3124 (2005).
[CrossRef] [PubMed]

B. Heeg and G. Rumbles, "Influence of radiative transfer on optical cooling in the condensed phase," J. Appl. Phys. 93, 1966-1973 (2003).
[CrossRef]

Hehlen, M. P.

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Ilik, P.

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

Klinkovsky, T.

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

Koblinger, L.

L. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Lamouche, G.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

Lavallard, P.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

Loring, R. F.

Lux, L.

L. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).

Martinho, J. M. G.

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
[CrossRef]

E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
[CrossRef]

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
[CrossRef]

McCumber, E. E.

E. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Morrison, R. J. S.

B. L. Chadwick and R. J. S. Morrison, "Monte Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl," J. Chem. Soc. , Faraday Trans. 91, 1931-1934 (1995).

Mungan, C. E.

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. , Mol., Opt. Phys. 40, 161-228 (1999).

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Mungan, C.E.

S. R. Bowman and C.E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

Naus, J.

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

Nunes Pereira, E. J.

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
[CrossRef]

E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
[CrossRef]

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
[CrossRef]

Olson, R. W.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Pringsheim, P.

P. Pringsheim, "Zwei bemerkungen über den unterschied von lumineszenz-undtemperatur-strahlung," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Rumbles, G.

B. Heeg, Peter A. DeBarber, and G. Rumbles, "Influence of fluorescence reabsorption and trapping on solid-state optical cooling," Appl. Opt. 44, 3117-3124 (2005).
[CrossRef] [PubMed]

B. Heeg and G. Rumbles, "Influence of radiative transfer on optical cooling in the condensed phase," J. Appl. Phys. 93, 1966-1973 (2003).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Suris, R.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

Adv. At. (1)

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. , Mol., Opt. Phys. 40, 161-228 (1999).

Appl. Opt. (2)

Appl. Phys. B (1)

S. R. Bowman and C.E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

Appl. Phys. Lett. (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

J. Appl. Phys. (3)

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, "Low temperature laser cooling with a rare-Earth doped glass," J. Appl. Phys. 84, 509-516 (1998).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurement of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

B. Heeg and G. Rumbles, "Influence of radiative transfer on optical cooling in the condensed phase," J. Appl. Phys. 93, 1966-1973 (2003).
[CrossRef]

J. Chem. Phys. (3)

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of molecular radiative transport," J. Chem. Phys. 103, 3022-3028 (1995).
[CrossRef]

E. J. Nunes Pereira, M. N. Berberan-Santos, and J. M. G. Martinho, "Molecular radiative transport. II. Monte-Carlo simulation," J. Chem. Phys. 104, 8950-8965 (1996).
[CrossRef]

M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, "Stochastic theory of combined radiative and nonradiative transport," J. Chem. Phys. 107, 10480-10484 (1997).
[CrossRef]

J. Chem. Soc. (1)

B. L. Chadwick and R. J. S. Morrison, "Monte Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl," J. Chem. Soc. , Faraday Trans. 91, 1931-1934 (1995).

J. Opt. Soc. Am. B (1)

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescence cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Opt. Lett. (1)

Photosynth. Res. (1)

J. Naus, T. Klinkovsky, P. Ilik, and D. Cikanek, "Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions," Photosynth. Res. 40, 67-74 (1994).
[CrossRef]

Phys. Rev. (1)

E. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Phys. Rev. Lett. (2)

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature," Phys. Rev. Lett. 78, 1030-1033 (1997).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Z. Phys. (1)

P. Pringsheim, "Zwei bemerkungen über den unterschied von lumineszenz-undtemperatur-strahlung," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Other (1)

L. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of fluorescence reabsorption.

Fig. 2
Fig. 2

Refraction and reflection of a plane wave.

Fig. 3
Fig. 3

Flow chart of tracing a photon.

Fig. 4
Fig. 4

Sample configuration of fluorescence collection.

Fig. 5
Fig. 5

(a) Absorption spectrum of Yb-doped phosphate glass. (b) Corrected emission spectrum compared with measured emission spectrum and the spectrum computed from reciprocity.

Fig. 6
Fig. 6

Comparison of measured and simulated fluorescence spectra. (a) Fluorescence spectra of the disk sample with 1 mm thickness. (b) Fluorescence spectra of the disk sample with 3 mm thickness.

Fig. 7
Fig. 7

Redshift values induced by reabsorption and re-emission in Yb-doped phosphate glass. (a) Small waist beam goes through cylinder and cuboid. (b) Large waist beam goes through cylinder and cuboid.

Fig. 8
Fig. 8

External quantum efficiency in Yb-doped phosphate glass (supposing the internal quantum efficiency is 0.998). (a) Small waist beam goes through cylinder and cuboid. (b) Large waist beam goes through cylinder and cuboid.

Fig. 9
Fig. 9

Influence of fluorescence reabsorption on cooling efficiency per unit length.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

λ F = F ( λ ) λ d λ ,
F ( λ ) d λ = 1 ,
η c = Q λ λ F λ F ,
η c l = 1 P P ( P F P P ] z = α ( λ ) Q λ λ F λ F ,
X = B ( 1 , p ) = { 1 , ξ 1 < p 0 , ξ 1 p ,
l = l n ( 1 p ξ 2 ) α ( λ ) .
Y = B ( 1 , Q ) = { 1 , ξ 3 < Q 0 , ξ 3 Q .
s = u i + v j + w k ,
u = sin θ cos φ ,
v = sin θ sin φ ,
w = cos θ .
r ˜ = E ˜ ( r ) E ˜ ( i ) = ( n 2 / n 1 ) 2 cos θ 1 [ ( n 2 / n 1 ) 2 sin 2 θ 1 ] 1 / 2 ( n 2 / n 1 ) 2 cos θ 1 + [ ( n 2 / n 1 ) 2 sin 2 θ 1 ] 1 / 2 ,
r ˜ = E ˜ ( r ) E ˜ ( i ) = cos θ 1 [ ( n 2 / n 1 ) 2 sin 2 θ 1 ] 1 / 2 cos θ 1 + [ ( n 2 / n 1 ) 2 sin 2 θ 1 ] 1 / 2 ,
q = 0.5 | r ˜ | 2 + 0.5 | r ˜ | 2 .
Z = B ( 1 , q ) = { 1 , ξ 6 < q 0 , ξ 6 q .
σ e ( ν ) = σ a ( ν ) Z l Z u exp [ ( E Z L h ν ) / k T ] ,
σ e ( ν ) = λ 2 g ( ν ) 8 π n 2 τ ,
g ( ν ) = 8 π n 2 τ λ 2 Z l Z u σ a ( ν ) exp [ ( E Z L h ν ) / k T ] .

Metrics