Abstract

A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is considered as a medium for optical implementation of bioinspired neural nets. The optical mechanism of ETM under blue light and near-infrared exposure has the inherent ability at the material level to mimic the crucial components of the stylized Hodgkin–Huxley model of biological neurons. Combining this unique property with the high-resolution capability of ETM, a dense network of bioinspired neurons can be realized in a thin film of this infrared stimulable storage phosphor. When combined with suitable optical bistability and optical interconnectivity, it has the potential of producing an artificial nonlinear excitable medium analog to cortical tissue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).
  2. T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).
  3. S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
    [PubMed]
  4. S. Jutamulia, G. Stori, J. Lindmayer, and W. Seiderman, "Use of electron trapping materials in optical signal processing. 1: Parallel Boolean logic," Appl. Opt. 29, 4806-4811 (1990).
    [CrossRef] [PubMed]
  5. Z. Wen and N. Farhat, "Optoelectronic neural dendritic tree processing with electron-trapping materials," Opt. Lett. 20, 614-616 (1995).
    [CrossRef] [PubMed]
  6. Z. Wen and N. Farhat, "Pulsating neuron produced by electron trapping materials," Opt. Lett. 19, 1394-1396 (1994).
    [CrossRef] [PubMed]
  7. A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).
  8. S. Jutamulia, G. Stori, J. Lindmayer, and W. Seiderman, "Use of electron trapping materials in optical signal processing. 2: two-dimensional associative memory," Appl. Opt. 30, 2879-2884 (1991).
    [CrossRef] [PubMed]
  9. A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.
  10. F. Itoh, K. Kitayama, and Y. Tamura, "Optical outer-product learning in a neural network using optically stimulable phosphor," Opt. Lett. 15, 860-862 (1990).
    [CrossRef] [PubMed]
  11. J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).
  12. J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).
  13. R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.
  14. R. Pashaie and N. H. Farhat, "Realization of receptive fields with excitatory and inhibitory responses on the equilibrium-state luminescence of electron trapping material thin film," Opt. Lett. 32, 1501-1503 (2007).
    [CrossRef] [PubMed]
  15. R. Pashaie and N. H. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," J. Opt. Soc. Am. B 24, 1927-1941 (2007).
    [CrossRef]
  16. J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).
  17. Z. Wen and N. Farhat, "Dynamics of electron trapping materials for use in optoelectronic neurocomputing," Appl. Opt. 32, 7251-7265 (1993).
    [CrossRef] [PubMed]
  18. Z. Wen and N. Farhat, "Electron trapping materials and electron-beam-addressed electron trapping material devices: an improved model," Appl. Opt. 34, 5188-5198 (1995).
    [CrossRef] [PubMed]
  19. A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
    [CrossRef]
  20. The electron-trapping material used for this investigation was furnished by the former Quantex Corporation, Rockville, Md.
  21. G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
    [CrossRef] [PubMed]
  22. G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
    [CrossRef] [PubMed]
  23. Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani, "Temperature dependence of photoluminescence in SrS: Eu2+, Sm3+ thin films," J. Opt. Soc. Am. B 10, 1464-1469 (1993).
    [CrossRef]
  24. Opening of potassium ion channels during the repolarization is modeled by an α-function: α(t) = At exp(−t/τ), where A is the amplitude factor and τ is the time constant.

2007 (2)

2006 (1)

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

2002 (1)

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
[CrossRef] [PubMed]

2001 (3)

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
[CrossRef] [PubMed]

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

1995 (2)

1994 (2)

Z. Wen and N. Farhat, "Pulsating neuron produced by electron trapping materials," Opt. Lett. 19, 1394-1396 (1994).
[CrossRef] [PubMed]

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

1993 (4)

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
[CrossRef]

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
[PubMed]

Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani, "Temperature dependence of photoluminescence in SrS: Eu2+, Sm3+ thin films," J. Opt. Soc. Am. B 10, 1464-1469 (1993).
[CrossRef]

Z. Wen and N. Farhat, "Dynamics of electron trapping materials for use in optoelectronic neurocomputing," Appl. Opt. 32, 7251-7265 (1993).
[CrossRef] [PubMed]

1991 (1)

1990 (3)

1989 (1)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

1988 (2)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).

Bear, M. F.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Connors, B. W.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Farhat, N.

Farhat, N. H.

R. Pashaie and N. H. Farhat, "Realization of receptive fields with excitatory and inhibitory responses on the equilibrium-state luminescence of electron trapping material thin film," Opt. Lett. 32, 1501-1503 (2007).
[CrossRef] [PubMed]

R. Pashaie and N. H. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," J. Opt. Soc. Am. B 24, 1927-1941 (2007).
[CrossRef]

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
[CrossRef] [PubMed]

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
[CrossRef] [PubMed]

Goldmith, P.

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

Gross, K.

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

Hua, Z.

Huguenard, J.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Itoh, F.

Jutamulia, S.

Kitayama, K.

Klar, H.

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
[PubMed]

Lee, G.

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
[CrossRef] [PubMed]

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
[CrossRef] [PubMed]

Lentine, A. L.

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
[CrossRef]

Lindmayer, J.

Ma, C. T.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

McAulay, A. D.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

McCormick, D. A.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Miller, D.

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
[CrossRef]

Paradiso, M. A.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Pashaie, R.

Prange, S.

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
[PubMed]

Salamanca-Riba, L.

Seiderman, W.

Soltani, P. K.

Stori, G.

Tamura, Y.

Trappenberg, T. P.

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

Wang, J.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

Wen, Z.

Wuttig, M.

Appl. Opt. (4)

Comput. Technol. Rev. (1)

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

IEEE J. Quantum Electron. (1)

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Neural Networks (2)

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
[CrossRef] [PubMed]

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

Solid State Technol. (1)

J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).

Other (8)

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
[PubMed]

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Opening of potassium ion channels during the repolarization is modeled by an α-function: α(t) = At exp(−t/τ), where A is the amplitude factor and τ is the time constant.

The electron-trapping material used for this investigation was furnished by the former Quantex Corporation, Rockville, Md.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Optical mechanism of the charging and discharging of ETM. Interaction of blue photons and electrons of valence band excites electrons and sends them to the communication band. Those excited electrons will tunnel to the trap level and become trapped electrons. NIR photons give sufficient energy to the trapped electrons to elevate them out of the trapping level, allowing them to return to the valence band and release the stored energy in the form of orange luminescence [12].

Fig. 2
Fig. 2

(Color online) Experimental and theoretical results. (a) Charging characteristic curves of electron trapping material under different levels of constant blue light illumination. (b) Discharging characteristic curves of electron trapping material under different levels of constant NIR illumination.

Fig. 3
Fig. 3

(Color online) Equilibrium-state plane of a typical ETM sample. Numbers on the contours indicate the intensity of the orange luminescence in nanowatts per square centimeter.

Fig. 4
Fig. 4

(Color online) Status of the ion channels during five different phases of neurons. Leaky ion channels are permanently open. (a) Resting state: all gated ion channels are closed, (b) initial depolarization: neurotransmitter-gated ion channels are open and positive sodium ions penetrate the cell body and increase the membrane potential, (c) depolarization: sodium voltage-gated ion channels are open and sodium ions diffuse to the cell body, (d) repolarization: sodium voltage-gated ion channels get closed eventually when the potassium voltage-gated ion channels are open and potassium ions diffuse out of the cell body, and (e) hyperpolarization: the voltage-gated potassium ion channels get closed eventually and the membrane potential returns to the resting potential.

Fig. 5
Fig. 5

(Color online) Structural dualities, simplified models of the (a) neuron membrane and (b) energy levels of ETM.

Fig. 6
Fig. 6

(Color online) Schematic of the experimental setup. A thin film of ETM deposited on a thin quartz substrate is exposed by five different light sources: RB, R-NIR, EB, DB, and H-NIR. Among these light sources RB, DB, and EB are blue LEDs, and H-NIR and R-NIR are NIR fiber coupled semiconductor lasers. The light sources RB and R-NIR are dc biased to generate the equilibrium state luminescence in the resting state, EB produces signals of the external excitations. Other light sources DB and H-NIR are responsible for producing depolarization and hyperpolarization signals. In the figure, acronyms O.F., B.F., and NIR.F stand for orange, blue, and NIR optical filters, respectively.

Fig. 7
Fig. 7

(Color online) Spatiotemporal integration in ETM. A sequence of three Gaussian blue light pulses stimulate ETM. Still the level of stimulation is not sufficient to cross the threshold level and the intensity of orange luminescence merges to the resting state after the last blue light pulse.

Fig. 8
Fig. 8

(Color online) Optical spiking neuron. A sequence of four Gaussian blue light pulses stimulate the ETM. This stimulation is strong enough and the optical neuron fires. After firing, the resting state is reinstated eventually. Two signals on the top are the Gaussian shaped blue pulse and the α-function shaped NIR pulse that are dual of the opening and closing of sodium voltage-gated ion channels during depolarization, and the opening and closing of the potassium ion channels during the repolarization process, respectively.

Tables (1)

Tables Icon

Table 1 Summary of Dualities Between Descriptive Entities

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d n d t = 4 ξ η I B sinh 2 ( n s n 2 ξ I B ) 4 ξ η I NIR sinh 2 ( n 2 ξ I NIR ) ,
I O = α n ( t ) I B + β n ( t ) I NIR .
4 ξ η I B sinh 2 ( n s n * 2 ξ I B ) = 4 ξ η I NIR sinh 2 ( n * 2 ξ I NIR ) ,
I O * = α n * I B + β n * I NIR .

Metrics