Abstract

An injection seeded Nd:YAG laser oscillator has been set up and frequency stabilized following an rf-sideband scheme. This dual rod oscillator emits pulses with 23  ns duration and 20  mJ energy. The beam quality is almost diffraction limited (M2=1.2). The frequency stability was characterized with a heterodyne method to 1.0  MHz root mean square (rms). This oscillator will serve as the front end for a series of lidar devices for spectrally sensitive measurements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. K. Park, G. Giuliani, and R. L. Byer, "Frequency and mode control of Q-switched Nd:YAG lasers," IEEE J. Quantum Electron. 20, 117-125 (1984).
    [CrossRef]
  2. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, "Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system," Appl. Opt. 44, 582-590 (2005).
    [CrossRef] [PubMed]
  3. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  4. E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
    [CrossRef]
  5. R. V. Pound, "Electronic frequency stabilization of microwave oscillators," Rev. Sci. Instrum. 17, 490-505 (1946).
    [CrossRef] [PubMed]
  6. R. Adler, "A study of locking phenomena in oscillators," Proc. IRE 34, 351-357 (1946), reprinted in Proc. IEEE 61, 1380-1385 (1973).
    [CrossRef]
  7. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 24.
  8. L. A. Rahn, "Feedback stabilization of an injection-seeded Nd:YAG laser," Appl. Opt. 24, 940-942 (1985).
    [CrossRef] [PubMed]
  9. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, "Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar," Appl. Phys. B 87, 437-444 (2007).
    [CrossRef]
  10. V. Wulfmeyer and M. Randall, "2-μm Doppler lidar transmitter with high frequency stability and low chirp," Opt. Lett. 25, 1228-1230 (2000).
    [CrossRef]
  11. S. W. Henderson, E. H. Yuen, and E. S. Fry, "Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers," Opt. Lett. 11, 715-717 (1986).
    [CrossRef] [PubMed]
  12. T. W. Hänsch and B. Coiullaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  13. W. C. Scott and M. de Wit, "Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser," Appl. Phys. Lett. 18, 3-4 (1971).
    [CrossRef]
  14. S. Silvestri, P. Laporta, and V. Magni, "Rod thermal lensing effects in solid-state laser ring resonators," Opt. Commun. 65, 373-376 (1988).
    [CrossRef]
  15. W. Koechner, Solid State Laser Engineering, 3rd ed. (Springer-Verlag, 1992), Chap. 7.1.3.

2007 (1)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, "Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar," Appl. Phys. B 87, 437-444 (2007).
[CrossRef]

2005 (1)

2001 (1)

E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

2000 (1)

1988 (1)

S. Silvestri, P. Laporta, and V. Magni, "Rod thermal lensing effects in solid-state laser ring resonators," Opt. Commun. 65, 373-376 (1988).
[CrossRef]

1986 (1)

1985 (1)

1984 (1)

Y. K. Park, G. Giuliani, and R. L. Byer, "Frequency and mode control of Q-switched Nd:YAG lasers," IEEE J. Quantum Electron. 20, 117-125 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Coiullaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

1971 (1)

W. C. Scott and M. de Wit, "Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser," Appl. Phys. Lett. 18, 3-4 (1971).
[CrossRef]

1946 (2)

R. V. Pound, "Electronic frequency stabilization of microwave oscillators," Rev. Sci. Instrum. 17, 490-505 (1946).
[CrossRef] [PubMed]

R. Adler, "A study of locking phenomena in oscillators," Proc. IRE 34, 351-357 (1946), reprinted in Proc. IEEE 61, 1380-1385 (1973).
[CrossRef]

Am. J. Phys. (1)

E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, "Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar," Appl. Phys. B 87, 437-444 (2007).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

W. C. Scott and M. de Wit, "Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser," Appl. Phys. Lett. 18, 3-4 (1971).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. K. Park, G. Giuliani, and R. L. Byer, "Frequency and mode control of Q-switched Nd:YAG lasers," IEEE J. Quantum Electron. 20, 117-125 (1984).
[CrossRef]

Opt. Commun. (2)

T. W. Hänsch and B. Coiullaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

S. Silvestri, P. Laporta, and V. Magni, "Rod thermal lensing effects in solid-state laser ring resonators," Opt. Commun. 65, 373-376 (1988).
[CrossRef]

Opt. Lett. (2)

Proc. IRE (1)

R. Adler, "A study of locking phenomena in oscillators," Proc. IRE 34, 351-357 (1946), reprinted in Proc. IEEE 61, 1380-1385 (1973).
[CrossRef]

Rev. Sci. Instrum. (1)

R. V. Pound, "Electronic frequency stabilization of microwave oscillators," Rev. Sci. Instrum. 17, 490-505 (1946).
[CrossRef] [PubMed]

Other (2)

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 24.

W. Koechner, Solid State Laser Engineering, 3rd ed. (Springer-Verlag, 1992), Chap. 7.1.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Setup of the dual rod ring oscillator with injection seeding and frequency stabilization schematic. EOM denotes an electro-optical modulator, PC denotes a Pockels cell, pol. denotes a thin-film polarizer, and PDH denotes PDH.

Fig. 2
Fig. 2

(Color online) Schematic of Q-switch control in ring oscillator.

Fig. 3
Fig. 3

(Color online) Transverse fundamental eigenmode plotted for the unfolded ring resonator.

Fig. 4
Fig. 4

Stability range presented as calculated beam radius in the laser rods as a function of average pump power of both laser heads.

Fig. 5
Fig. 5

(Color online) Measured change in the optical path length of one of the two identical Nd:YAG rods in the ring oscillator for the actual pump conditions: f r e p = 400 Hz , t p u m p = 200 μs , and duty cycle 8 % .

Fig. 6
Fig. 6

Setup of the electronics for the PDH-like stabilization scheme.

Fig. 7
Fig. 7

(Color online) PDH error signal (straight curve) and seed laser reflected by the slave ring resonator detected at the photodiode (dotted curve).

Fig. 8
Fig. 8

(Color online) Measured error signal (black), piezoposition input (red), output from piezocontroller to set the piezoposition (magenta), diode pump current (green), and Q-switch pulse (blue).

Fig. 9
Fig. 9

(Color online) Evaluation of frequency stability. One hundred shots are evaluated within 5 min .

Metrics