Abstract

We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12° to 40° (mean±SD=31°±8°). The optic axial plane always inclined downward in the nasal direction at 1°–45° below the horizontal (mean±SD=22±13°). The retardance produced by the corneas was estimated to be less than 200  nm. In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. M. Bueno and F. Vargas-Martin, "Measurements of the corneal birefringence with a liquid-crystal imaging polariscope," Appl. Opt. 41, 116-124 (2002).
    [CrossRef] [PubMed]
  2. D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, "Numerical modeling of the cornea's lamellar structure and birefringence properties," J. Opt. Soc. Am. A 12, 1425-1438 (1995).
    [CrossRef]
  3. A. Stanworth and E. J. Naylor, "The polarization optics of the isolated cornea," Br. J. Ophthalmol. 34, 201-211 (1950).
    [CrossRef] [PubMed]
  4. A. Stanworth and E. J. Naylor, "Polarized light studies of the cornea," J. Exp. Biol. 30, 160-169 (1953).
  5. L. J. Bour and N. J. Lopes Cardozo, "On the birefringence of the living human eye," Vision Res. 21, 1413-1421 (1981).
    [CrossRef] [PubMed]
  6. G. J. Van Blokland and S. C. Verhelst, "Corneal polarization in the living human eye explained with a biaxial model," J. Opt. Soc. Am. A 4, 82-90 (1987).
    [CrossRef] [PubMed]
  7. L. Cavuoto, X.-R. Huang, and R. Knighton, "Corneal birefringence mapped by scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 48, ARVO E-Abstract 3532 (2007).
  8. D. Donohue, B. Stoyanov, R. McCally, and R. Farrell, "A numerical test of the normal incidence uniaxial model of corneal birefringence," Cornea 15, 278-285 (1996).
    [CrossRef] [PubMed]
  9. J. Lekner, "Isogyre formation by isotropic refracting bodies," Ophthalmic Physiol. Opt. 15, 69-72 (1995).
    [CrossRef] [PubMed]
  10. B. Pierscionek, "Explanation of isogyre formation by the eye lens,"Ophthalmic Physiol. Opt. 13, 91-94 (1993).
    [CrossRef] [PubMed]
  11. B. Pierscionek and D. Chan, "Mathematical decription of isogyre formation in refracting structures," Ophthalmic Physiol. Opt. 13, 212-215 (1993).
    [CrossRef]
  12. B. Pierscionek and R. Reytomas, "Light intensity distributions in refracting structures placed between crossed polarizers," Exp. Eye Res. 62, 573-580 (1996).
    [CrossRef] [PubMed]
  13. V. Louis-Dorr, K. Naoun, P. Allé, A.-M. Benoit, and A. Raspiller, "Linear dichroism of the cornea," Appl. Opt. 43, 1515-1521 (2004).
    [CrossRef] [PubMed]
  14. J. Bueno and J. Jaronski, "Spatially resolved polarization properties of in vitro corneas," Ophthalmic Physiol. Opt. 21, 384-392 (2001).
    [CrossRef] [PubMed]
  15. H. Anamula, A. A. Nezhuvingal, Y. Li, and B. D. Cameron, "Development of a noninvasive corneal birefringence-compensated glucose-sensing polarimeter," in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 4958, 303-312 (2003).
  16. Q. Wan, G. L. Cote, and J. B. Dixon, "Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence," J. Biomed. Opt. 10, 024029 (2005).
    [CrossRef] [PubMed]
  17. N. T. Choplin, D. C. Lundy, and A. W. Drcher, "Differentiating patients with glaucoma from glaucoma suspects and normal subjects by nerve fiber layer assessment with scanning laser polarimetry," Opthalmology (Philadelphia) 105, 2068-2076 (1998).
  18. D. S. Greenfield, R. W. Knighton, and X.-R. Huang, "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry," Am. J. Ophthalmol. 129, 715-722 (2000).
    [CrossRef] [PubMed]
  19. R. N. Weinreb, S. Shakiba, and L. Zangwill, "Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes," Am. J. Ophthalmol. 119, 627-636 (1995).
    [PubMed]
  20. R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Visual Sci. 43, 82-86 (2002).
  21. W. Nesse, Introduction to Optical Mineralogy (Oxford Press, 2003).
  22. G. Sen, Earth's Materials--Minerals and Rocks (Prentice Hall, 2001).
  23. A. Tobi, "A chart for measurement of optic axial angles," Am. Mineral. 41, 516-519 (1956).
  24. J. M. Bueno and M. C. W. Campbell, "Polarization properties of the in vitro old human crystalline lens," Ophthalmic Physiol. Opt. 23, 109-118 (2003).
    [CrossRef] [PubMed]
  25. R. Bone, "The role of the macular pigment in the detection of polarized light," Vision Res. 20, 213-220 (1980).
    [CrossRef] [PubMed]
  26. J. Bueno, "Measurement of parameters of polarization in the living human eye using imaging polarimetry," Vision Res. 40, 3791-3799 (2000).
    [CrossRef] [PubMed]
  27. J. Bueno, "Polarimetry in the human eye using an imaging linear polariscope," J. Opt. A , Pure Appl. Opt. 4, 553-561 (2002).
    [CrossRef]
  28. J. Bueno, E. Berrio, and P. Artal, "Abbero-polariscope for the human eye," Opt. Lett. 28, 1209-1211 (2003).
    [CrossRef] [PubMed]
  29. R. Hemenger, "Birefringence of a medium of tenuous parallel cylinders," Appl. Opt. 28, 4030-4034 (1989).
    [CrossRef] [PubMed]
  30. R. Farrell, D. Rouseff, and R. McCally, "Propagation of polarized light through two- and three-layer anisotropic stacks," J. Opt. Soc. Am. A 22, 1981-1992 (2005).
    [CrossRef]
  31. K. Meek, T. Blamires, G. Elliott, T. Gyi, and C. Nave, "The organisation of collagen fibrils in the human corneal stroma: a synchroton x-ray diffraction study," Curr. Eye Res. 6, 841-846 (1987).
    [CrossRef] [PubMed]
  32. A. Daxer and P. Fratzl, "Collagen fibril orientation in the human corneal stroma and its implications for keratoconus," Invest. Ophthalmol. Visual Sci. 38, 121-129 (1997).
  33. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Sci. 48, 3551-3558 (2007).
    [CrossRef]

2007 (2)

L. Cavuoto, X.-R. Huang, and R. Knighton, "Corneal birefringence mapped by scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 48, ARVO E-Abstract 3532 (2007).

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Sci. 48, 3551-3558 (2007).
[CrossRef]

2005 (2)

R. Farrell, D. Rouseff, and R. McCally, "Propagation of polarized light through two- and three-layer anisotropic stacks," J. Opt. Soc. Am. A 22, 1981-1992 (2005).
[CrossRef]

Q. Wan, G. L. Cote, and J. B. Dixon, "Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence," J. Biomed. Opt. 10, 024029 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

J. Bueno, E. Berrio, and P. Artal, "Abbero-polariscope for the human eye," Opt. Lett. 28, 1209-1211 (2003).
[CrossRef] [PubMed]

J. M. Bueno and M. C. W. Campbell, "Polarization properties of the in vitro old human crystalline lens," Ophthalmic Physiol. Opt. 23, 109-118 (2003).
[CrossRef] [PubMed]

2002 (3)

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Visual Sci. 43, 82-86 (2002).

J. M. Bueno and F. Vargas-Martin, "Measurements of the corneal birefringence with a liquid-crystal imaging polariscope," Appl. Opt. 41, 116-124 (2002).
[CrossRef] [PubMed]

J. Bueno, "Polarimetry in the human eye using an imaging linear polariscope," J. Opt. A , Pure Appl. Opt. 4, 553-561 (2002).
[CrossRef]

2001 (1)

J. Bueno and J. Jaronski, "Spatially resolved polarization properties of in vitro corneas," Ophthalmic Physiol. Opt. 21, 384-392 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Bueno, "Measurement of parameters of polarization in the living human eye using imaging polarimetry," Vision Res. 40, 3791-3799 (2000).
[CrossRef] [PubMed]

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry," Am. J. Ophthalmol. 129, 715-722 (2000).
[CrossRef] [PubMed]

1998 (1)

N. T. Choplin, D. C. Lundy, and A. W. Drcher, "Differentiating patients with glaucoma from glaucoma suspects and normal subjects by nerve fiber layer assessment with scanning laser polarimetry," Opthalmology (Philadelphia) 105, 2068-2076 (1998).

1997 (1)

A. Daxer and P. Fratzl, "Collagen fibril orientation in the human corneal stroma and its implications for keratoconus," Invest. Ophthalmol. Visual Sci. 38, 121-129 (1997).

1996 (2)

D. Donohue, B. Stoyanov, R. McCally, and R. Farrell, "A numerical test of the normal incidence uniaxial model of corneal birefringence," Cornea 15, 278-285 (1996).
[CrossRef] [PubMed]

B. Pierscionek and R. Reytomas, "Light intensity distributions in refracting structures placed between crossed polarizers," Exp. Eye Res. 62, 573-580 (1996).
[CrossRef] [PubMed]

1995 (3)

J. Lekner, "Isogyre formation by isotropic refracting bodies," Ophthalmic Physiol. Opt. 15, 69-72 (1995).
[CrossRef] [PubMed]

R. N. Weinreb, S. Shakiba, and L. Zangwill, "Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes," Am. J. Ophthalmol. 119, 627-636 (1995).
[PubMed]

D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, "Numerical modeling of the cornea's lamellar structure and birefringence properties," J. Opt. Soc. Am. A 12, 1425-1438 (1995).
[CrossRef]

1993 (2)

B. Pierscionek, "Explanation of isogyre formation by the eye lens,"Ophthalmic Physiol. Opt. 13, 91-94 (1993).
[CrossRef] [PubMed]

B. Pierscionek and D. Chan, "Mathematical decription of isogyre formation in refracting structures," Ophthalmic Physiol. Opt. 13, 212-215 (1993).
[CrossRef]

1989 (1)

1987 (2)

G. J. Van Blokland and S. C. Verhelst, "Corneal polarization in the living human eye explained with a biaxial model," J. Opt. Soc. Am. A 4, 82-90 (1987).
[CrossRef] [PubMed]

K. Meek, T. Blamires, G. Elliott, T. Gyi, and C. Nave, "The organisation of collagen fibrils in the human corneal stroma: a synchroton x-ray diffraction study," Curr. Eye Res. 6, 841-846 (1987).
[CrossRef] [PubMed]

1981 (1)

L. J. Bour and N. J. Lopes Cardozo, "On the birefringence of the living human eye," Vision Res. 21, 1413-1421 (1981).
[CrossRef] [PubMed]

1980 (1)

R. Bone, "The role of the macular pigment in the detection of polarized light," Vision Res. 20, 213-220 (1980).
[CrossRef] [PubMed]

1956 (1)

A. Tobi, "A chart for measurement of optic axial angles," Am. Mineral. 41, 516-519 (1956).

1953 (1)

A. Stanworth and E. J. Naylor, "Polarized light studies of the cornea," J. Exp. Biol. 30, 160-169 (1953).

1950 (1)

A. Stanworth and E. J. Naylor, "The polarization optics of the isolated cornea," Br. J. Ophthalmol. 34, 201-211 (1950).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry," Am. J. Ophthalmol. 129, 715-722 (2000).
[CrossRef] [PubMed]

R. N. Weinreb, S. Shakiba, and L. Zangwill, "Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes," Am. J. Ophthalmol. 119, 627-636 (1995).
[PubMed]

Am. Mineral. (1)

A. Tobi, "A chart for measurement of optic axial angles," Am. Mineral. 41, 516-519 (1956).

Appl. Opt. (3)

Br. J. Ophthalmol. (1)

A. Stanworth and E. J. Naylor, "The polarization optics of the isolated cornea," Br. J. Ophthalmol. 34, 201-211 (1950).
[CrossRef] [PubMed]

Cornea (1)

D. Donohue, B. Stoyanov, R. McCally, and R. Farrell, "A numerical test of the normal incidence uniaxial model of corneal birefringence," Cornea 15, 278-285 (1996).
[CrossRef] [PubMed]

Curr. Eye Res. (1)

K. Meek, T. Blamires, G. Elliott, T. Gyi, and C. Nave, "The organisation of collagen fibrils in the human corneal stroma: a synchroton x-ray diffraction study," Curr. Eye Res. 6, 841-846 (1987).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

B. Pierscionek and R. Reytomas, "Light intensity distributions in refracting structures placed between crossed polarizers," Exp. Eye Res. 62, 573-580 (1996).
[CrossRef] [PubMed]

Invest. Ophthalmol. Sci. (1)

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Sci. 48, 3551-3558 (2007).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (3)

A. Daxer and P. Fratzl, "Collagen fibril orientation in the human corneal stroma and its implications for keratoconus," Invest. Ophthalmol. Visual Sci. 38, 121-129 (1997).

L. Cavuoto, X.-R. Huang, and R. Knighton, "Corneal birefringence mapped by scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 48, ARVO E-Abstract 3532 (2007).

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Visual Sci. 43, 82-86 (2002).

J. Biomed. Opt. (1)

Q. Wan, G. L. Cote, and J. B. Dixon, "Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence," J. Biomed. Opt. 10, 024029 (2005).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

A. Stanworth and E. J. Naylor, "Polarized light studies of the cornea," J. Exp. Biol. 30, 160-169 (1953).

J. Opt. A (1)

J. Bueno, "Polarimetry in the human eye using an imaging linear polariscope," J. Opt. A , Pure Appl. Opt. 4, 553-561 (2002).
[CrossRef]

J. Opt. Soc. Am. A (3)

Ophthalmic Physiol. Opt. (5)

J. Bueno and J. Jaronski, "Spatially resolved polarization properties of in vitro corneas," Ophthalmic Physiol. Opt. 21, 384-392 (2001).
[CrossRef] [PubMed]

J. Lekner, "Isogyre formation by isotropic refracting bodies," Ophthalmic Physiol. Opt. 15, 69-72 (1995).
[CrossRef] [PubMed]

B. Pierscionek, "Explanation of isogyre formation by the eye lens,"Ophthalmic Physiol. Opt. 13, 91-94 (1993).
[CrossRef] [PubMed]

B. Pierscionek and D. Chan, "Mathematical decription of isogyre formation in refracting structures," Ophthalmic Physiol. Opt. 13, 212-215 (1993).
[CrossRef]

J. M. Bueno and M. C. W. Campbell, "Polarization properties of the in vitro old human crystalline lens," Ophthalmic Physiol. Opt. 23, 109-118 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opthalmology (Philadelphia) (1)

N. T. Choplin, D. C. Lundy, and A. W. Drcher, "Differentiating patients with glaucoma from glaucoma suspects and normal subjects by nerve fiber layer assessment with scanning laser polarimetry," Opthalmology (Philadelphia) 105, 2068-2076 (1998).

Vision Res. (3)

R. Bone, "The role of the macular pigment in the detection of polarized light," Vision Res. 20, 213-220 (1980).
[CrossRef] [PubMed]

J. Bueno, "Measurement of parameters of polarization in the living human eye using imaging polarimetry," Vision Res. 40, 3791-3799 (2000).
[CrossRef] [PubMed]

L. J. Bour and N. J. Lopes Cardozo, "On the birefringence of the living human eye," Vision Res. 21, 1413-1421 (1981).
[CrossRef] [PubMed]

Other (3)

H. Anamula, A. A. Nezhuvingal, Y. Li, and B. D. Cameron, "Development of a noninvasive corneal birefringence-compensated glucose-sensing polarimeter," in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 4958, 303-312 (2003).

W. Nesse, Introduction to Optical Mineralogy (Oxford Press, 2003).

G. Sen, Earth's Materials--Minerals and Rocks (Prentice Hall, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Synoptic diagram showing the optical arrangement of the Nikon POH 3 petrological microscope and sample holder used in this study.

Fig. 2
Fig. 2

Isogyres produced by Bertrand lens with a 40 × objective (numerical aperture = 0.65 ) for the right eye of subject 6 (a and b), the left eye of subject 6 (c and d), and the right eye of subject 1 (e and f). The separation of the isogyres for these corneal samples indicates 2V angles of 32°, 33°, and 19°, respectively. The annulus seen in the images is an artifact resulting from the use of an objective lens taken from a phase-contrast microscope. The images on the right (b, d, and f) show the characteristic colors observed upon insertion of the 550   nm retardation plate. The colors are indicative of a negative biaxial material.

Fig. 3
Fig. 3

Orientation of the principal axes of the indicatrix relative to the cornea of a typical left eye. SA, FA, and IA are the slow, fast, and intermediate principal axes, respectively. The two axes labeled OA are the optic axes. They define the optic axial plane, and the angle between them is the 2V angle.

Tables (1)

Tables Icon

Table 1 Donor Information and Parameters of the Corneal Anisotropy

Metrics