Abstract

Two-dimensional gas-phase temperature fields were quantitatively measured in an evaporating ethanol spray with multiline excitation thermometry based on laser-induced fluorescence of nitric oxide (NO-LIF). This technique yields absolute temperature fields without calibration and simultaneously detects the spray position. The accuracy of the presented temperature measurements is ±1  K. Systematic errors of the scanned multiline thermometry approach due to time averaging in turbulent systems were investigated and found to be negligible. The pulsed spray was generated by a gasoline direct-injection nozzle with swirl injecting ethanol into air in a flow cell at room temperature and atmospheric pressure. The gas temperature inside the spray cloud was found to decrease by 10 K at 510  ms after injection. Different injection pressures influence the evaporation behavior.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. D. Fansler and M. C. Drake, "Designer diagnostics for developing direct-injection gasoline engines," J. Phys. Conf. Ser. 45, 1-17 (2006).
    [CrossRef]
  2. J. Fischer, A. Velji, U. Spicher, F. Zimmermann, and C. Schulz, "Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF," SAE Technical Paper 2004-01-1916 (2004).
  3. A. M. Lippert, T. D. Fansler, M. C. Drake, and A. S. Solomon, "High-speed imaging and CFD modeling of sprays and combustion in a spray-guided spark-ignition direct injection engine," Proceedings of the AVL Internationales Symposium für Verbrennungsdiagnostik, Baden-Baden, Germany, 15-16 June 2004.
  4. F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, "Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering," Opt. Lett. 29, 247-249 (2003).
    [CrossRef]
  5. R. W. Dibble and R. E. Hollenbach, "Laser Rayleigh thermometry in turbulent flames," Proc. Combust. Inst. 18, 1489-1499 (1981).
  6. D. Hoffman, K.-U. Münch, and A. Leipertz, "Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering," Opt. Lett. 21, 525-527 (1996).
    [CrossRef] [PubMed]
  7. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, "Laser-induced fluorescence of seeded nitric oxide as a flame thermometer," Appl. Phys. B 66, 503-510 (1998).
    [CrossRef]
  8. W. G. Bessler and C. Schulz, "Quantitative multi-line NO-LIF temperature imaging," Appl. Phys. B 78, 519-533 (2004).
    [CrossRef]
  9. S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion," Appl. Phys. B 71, 717-723 (2000).
    [CrossRef]
  10. C. F. Kaminski, J. Engström, and M. Aldén, "Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence," Proc. Combust. Inst. 27, 85-93 (1998).
  11. A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, and W. Stricker, "Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH4/air flames," Appl. Phys. B 61, 409-414 (1995).
    [CrossRef]
  12. H. Kronemayer, W. G. Bessler, and C. Schulz, "Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry," Appl. Phys. B 81, 1071-1074 (2005).
    [CrossRef]
  13. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, "Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry," Appl. Phys. B 88, 373-377 (2007).
    [CrossRef]
  14. T. Lee, W. G. Bessler, H. Kronemayer, C. Schulz, J. B. Jeffries, and R. K. Hanson, "Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry," Appl. Opt. 44, 6718-6728 (2005).
    [CrossRef] [PubMed]
  15. W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, "A versatile modeling tool for nitric oxide LIF spectra (http://www.lifsim.com)," in Proceedings of the Third Joint Meeting of the US Sections of The Combustion Institute (Chicago, 2003), P105.
  16. I. Düwel, H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, and J. Wolfrum, "Experimental and numerical characterization of a turbulent spray flame," Proc. Combust. Inst. 31, 2247-2255 (2007).
    [CrossRef]
  17. M. J. T. Milton, G. Ancellet, A. Apituley, J. Bosenberg, W. Carnuth, F. Castagnoli, R. Trickl, H. Edner, L. Stefanutti, T. Schaberl, A. Sunesson, and C. Weitkamp, "Raman-shifted laser sources suitable for differential-absorption lidar measurements of ozone in the troposphere," Appl. Phys. B 66, 105-113 (1998).
    [CrossRef]
  18. M. Versluis, N. Georgiev, L. Martinsson, M. Aldén, and S. Kröll, "2D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration," Appl. Phys. B 65, 411-417 (1997).
    [CrossRef]

2007

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, "Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry," Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

I. Düwel, H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, and J. Wolfrum, "Experimental and numerical characterization of a turbulent spray flame," Proc. Combust. Inst. 31, 2247-2255 (2007).
[CrossRef]

2006

T. D. Fansler and M. C. Drake, "Designer diagnostics for developing direct-injection gasoline engines," J. Phys. Conf. Ser. 45, 1-17 (2006).
[CrossRef]

2005

T. Lee, W. G. Bessler, H. Kronemayer, C. Schulz, J. B. Jeffries, and R. K. Hanson, "Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry," Appl. Opt. 44, 6718-6728 (2005).
[CrossRef] [PubMed]

H. Kronemayer, W. G. Bessler, and C. Schulz, "Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry," Appl. Phys. B 81, 1071-1074 (2005).
[CrossRef]

2004

W. G. Bessler and C. Schulz, "Quantitative multi-line NO-LIF temperature imaging," Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

2003

2000

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

1998

C. F. Kaminski, J. Engström, and M. Aldén, "Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence," Proc. Combust. Inst. 27, 85-93 (1998).

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, "Laser-induced fluorescence of seeded nitric oxide as a flame thermometer," Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

M. J. T. Milton, G. Ancellet, A. Apituley, J. Bosenberg, W. Carnuth, F. Castagnoli, R. Trickl, H. Edner, L. Stefanutti, T. Schaberl, A. Sunesson, and C. Weitkamp, "Raman-shifted laser sources suitable for differential-absorption lidar measurements of ozone in the troposphere," Appl. Phys. B 66, 105-113 (1998).
[CrossRef]

1997

M. Versluis, N. Georgiev, L. Martinsson, M. Aldén, and S. Kröll, "2D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration," Appl. Phys. B 65, 411-417 (1997).
[CrossRef]

1996

1995

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, and W. Stricker, "Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH4/air flames," Appl. Phys. B 61, 409-414 (1995).
[CrossRef]

1981

R. W. Dibble and R. E. Hollenbach, "Laser Rayleigh thermometry in turbulent flames," Proc. Combust. Inst. 18, 1489-1499 (1981).

Appl. Opt.

Appl. Phys. B

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, and W. Stricker, "Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH4/air flames," Appl. Phys. B 61, 409-414 (1995).
[CrossRef]

H. Kronemayer, W. G. Bessler, and C. Schulz, "Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry," Appl. Phys. B 81, 1071-1074 (2005).
[CrossRef]

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, "Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry," Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

M. J. T. Milton, G. Ancellet, A. Apituley, J. Bosenberg, W. Carnuth, F. Castagnoli, R. Trickl, H. Edner, L. Stefanutti, T. Schaberl, A. Sunesson, and C. Weitkamp, "Raman-shifted laser sources suitable for differential-absorption lidar measurements of ozone in the troposphere," Appl. Phys. B 66, 105-113 (1998).
[CrossRef]

M. Versluis, N. Georgiev, L. Martinsson, M. Aldén, and S. Kröll, "2D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration," Appl. Phys. B 65, 411-417 (1997).
[CrossRef]

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, "Laser-induced fluorescence of seeded nitric oxide as a flame thermometer," Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

W. G. Bessler and C. Schulz, "Quantitative multi-line NO-LIF temperature imaging," Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

J. Phys. Conf. Ser.

T. D. Fansler and M. C. Drake, "Designer diagnostics for developing direct-injection gasoline engines," J. Phys. Conf. Ser. 45, 1-17 (2006).
[CrossRef]

Opt. Lett.

Proc. Combust. Inst.

I. Düwel, H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, and J. Wolfrum, "Experimental and numerical characterization of a turbulent spray flame," Proc. Combust. Inst. 31, 2247-2255 (2007).
[CrossRef]

R. W. Dibble and R. E. Hollenbach, "Laser Rayleigh thermometry in turbulent flames," Proc. Combust. Inst. 18, 1489-1499 (1981).

C. F. Kaminski, J. Engström, and M. Aldén, "Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence," Proc. Combust. Inst. 27, 85-93 (1998).

Other

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, and C. Schulz, "Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF," SAE Technical Paper 2004-01-1916 (2004).

A. M. Lippert, T. D. Fansler, M. C. Drake, and A. S. Solomon, "High-speed imaging and CFD modeling of sprays and combustion in a spray-guided spark-ignition direct injection engine," Proceedings of the AVL Internationales Symposium für Verbrennungsdiagnostik, Baden-Baden, Germany, 15-16 June 2004.

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, "A versatile modeling tool for nitric oxide LIF spectra (http://www.lifsim.com)," in Proceedings of the Third Joint Meeting of the US Sections of The Combustion Institute (Chicago, 2003), P105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). Experimental (symbols) and fitted (curve) NO-LIF excitation spectra from inside the spray cloud. The LIF signal is averaged over a 2 × 2 × 2 mm 3 region and 20 shots per wavelength position. The labels show the respective rotational transition in the NO A X   ( 0 , 0 ) band. (b). LIFSim numerical simulations of NO-LIF excitation spectra for the investigated temperature range. (c). LIFSim numerical simulations of the LIF signal intensity evolution with temperature for the five combined spectral features used in this work for air and constant NO mole fraction. The investigated temperature range is indicated.

Fig. 2
Fig. 2

Experimental setup of the multiline NO-LIF thermometry.

Fig. 3
Fig. 3

NO-LIF detection strategy with A X   ( 0 , 0 ) laser excitation and detection in the A X   ( 0 , 1 ) and ( 0 , 2 ) bands.

Fig. 4
Fig. 4

Setup of the optically accessible chamber with the spray visualized by Mie scattering.

Fig. 5
Fig. 5

Simultaneous spray and gas-temperature imaging in an evaporating ethanol spray. The first line shows 93 × 75 × 2 mm 3 single-shot Mie-scattering images at different time delays after the injection start. The rectangle in the upper left image shows the 80 × 60 × 2 mm 3 area used for the multiline NO-LIF thermometry presented in the next two lines. The pixel-by-pixel fitting method yields time-averaged Mie-scattering images as the baseline of the spectra (second row) and the gas-temperature fields (third row). The lower row shows temperature profiles extracted at a distance of 60   mm below the nozzle exit specified in the first image of the third row. The rectangle in the last image of the third row shows the area averaged for Fig. 6.

Fig. 6
Fig. 6

Gas-phase temperature 60   mm below the nozzle exit plotted versus the time delay after SOI for two different injection pressures.

Metrics