Abstract

Transient, high repetition pulse laser can be applied to test numerous physical parameters, where in situ, real time measurement and isolation of vibration is highly demanded. Because of its short half-width, high power, high repetition, and even large distortion, the laser presents unique challenges to conventional diagnosing methods. A system based on a novel cyclic radial shearing interferometer is proposed to diagnose the transient, high repetition pulse laser with common path, no reference plane, and high precision. With the spatial-carrier methods, the system needs only one interferogram to reconstruct amplitude and wavefront of the laser. The theories of amplitude and wavefront reconstruction have been validated by computer simulation, and errors less than 1/1000λ are obtained for both. Comparing with the results of the ZYGO interferometer, an error less than 1/20λ for both peak–valley and root-mean-square values is gained with good repeatability for the wavefront. The calibration process and real time diagnosis of a high repetition pulse laser are presented then. Finally, the error consideration and system optimization are discussed in detail.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (119)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription