Abstract

We report damage threshold measurements of novel absorbers comprised of either liquid-cooled silicon carbide or vitreous carbon foams. The measurements demonstrate damage thresholds up to 1.6×104W/cm2 at an incident circular spot size of 2  mm with an absorbance of 96% at 1.064μm. We present a summary of the damage threshold as a function of the water flow velocity and the absorbance measurements. We also present a qualitative description of a damage mechanism based on a two-phase heat transfer between the foam and the flowing water.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. W. Day, "Metrology for the optoelectronics industry," Proc. SPIE 4450, 33-43 (2001).
    [CrossRef]
  2. S. R. Gunn, "Calorimetric measurements of laser energy and power," J. Phys. E 6, 105-114 (1973).
    [CrossRef]
  3. R. L. Smith, T. W. Russell, W. E. Case, and A. L. Rasmussen, "A calorimeter for high-power CW lasers," IEEE Trans. Instrum. Meas. IM-21, 434-438 (1972).
    [CrossRef]
  4. D. C. Emmony and J. C. S. Bunn, "An absolute calorimeter for the measurement of CO2 laser power," J. Phys. E 9, 621-622 (1976).
    [CrossRef]
  5. G. A. Fisk and M. A. Gusinow, "Circulated-liquid calorimeter for the detection of high-power and high-energy pulsed laser signals," Rev. Sci. Instrum. 48, 118-131 (1976).
    [CrossRef]
  6. H. J. J. Seguin, V. A. Seguin, A. K. Nath, and J. Radzion, "Spinning water film power meter for high-power cw lasers," Rev. Sci. Instrum. 57, 185-190 (1985).
    [CrossRef]
  7. M. Kaviany, Principles of Heat Transfer in Porous Media (Springer-Verlag, 1991).
    [CrossRef]
  8. M. L. Hunt and C. L. Tien, "Effect of thermal dispersion on forced-convection in fibrous media," Int. J. Heat Mass Transfer 31, 301-309 (1988).
    [CrossRef]
  9. T. J. Lu, H. A. Stone, and M. F. Ashby, "Heat transfer in open-cell metal foams," Acta Mater. 46, 3619-3635 (1998).
    [CrossRef]
  10. A. Bhattacharya and R. L. Mahajan, "Finned metal foam heat sinks for electronics cooling in forced convection," J. Electron Packaging 124, 155-163 (2002).
    [CrossRef]
  11. K. Boomsma, D. Poulikakos, and F. Zwick, "Metal foams as compact high performance heat exchangers," Mech. Mater. 35, 1161-1176 (2003).
    [CrossRef]
  12. G. Hetsroni, M. Gurevich, and R. Rozenblit, "Metal foam heat sink for transmission window," Int. J. Heat Mass Transfer 48, 3793-3803 (2005).
    [CrossRef]
  13. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, 1989), pp. 7.78-7.80.
  14. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th ed. (Wiley, 2002).

2005

G. Hetsroni, M. Gurevich, and R. Rozenblit, "Metal foam heat sink for transmission window," Int. J. Heat Mass Transfer 48, 3793-3803 (2005).
[CrossRef]

2003

K. Boomsma, D. Poulikakos, and F. Zwick, "Metal foams as compact high performance heat exchangers," Mech. Mater. 35, 1161-1176 (2003).
[CrossRef]

2002

A. Bhattacharya and R. L. Mahajan, "Finned metal foam heat sinks for electronics cooling in forced convection," J. Electron Packaging 124, 155-163 (2002).
[CrossRef]

2001

G. W. Day, "Metrology for the optoelectronics industry," Proc. SPIE 4450, 33-43 (2001).
[CrossRef]

1998

T. J. Lu, H. A. Stone, and M. F. Ashby, "Heat transfer in open-cell metal foams," Acta Mater. 46, 3619-3635 (1998).
[CrossRef]

1988

M. L. Hunt and C. L. Tien, "Effect of thermal dispersion on forced-convection in fibrous media," Int. J. Heat Mass Transfer 31, 301-309 (1988).
[CrossRef]

1985

H. J. J. Seguin, V. A. Seguin, A. K. Nath, and J. Radzion, "Spinning water film power meter for high-power cw lasers," Rev. Sci. Instrum. 57, 185-190 (1985).
[CrossRef]

1976

D. C. Emmony and J. C. S. Bunn, "An absolute calorimeter for the measurement of CO2 laser power," J. Phys. E 9, 621-622 (1976).
[CrossRef]

G. A. Fisk and M. A. Gusinow, "Circulated-liquid calorimeter for the detection of high-power and high-energy pulsed laser signals," Rev. Sci. Instrum. 48, 118-131 (1976).
[CrossRef]

1973

S. R. Gunn, "Calorimetric measurements of laser energy and power," J. Phys. E 6, 105-114 (1973).
[CrossRef]

1972

R. L. Smith, T. W. Russell, W. E. Case, and A. L. Rasmussen, "A calorimeter for high-power CW lasers," IEEE Trans. Instrum. Meas. IM-21, 434-438 (1972).
[CrossRef]

Acta Mater.

T. J. Lu, H. A. Stone, and M. F. Ashby, "Heat transfer in open-cell metal foams," Acta Mater. 46, 3619-3635 (1998).
[CrossRef]

IEEE Trans. Instrum. Meas.

R. L. Smith, T. W. Russell, W. E. Case, and A. L. Rasmussen, "A calorimeter for high-power CW lasers," IEEE Trans. Instrum. Meas. IM-21, 434-438 (1972).
[CrossRef]

Int. J. Heat Mass Transfer

G. Hetsroni, M. Gurevich, and R. Rozenblit, "Metal foam heat sink for transmission window," Int. J. Heat Mass Transfer 48, 3793-3803 (2005).
[CrossRef]

M. L. Hunt and C. L. Tien, "Effect of thermal dispersion on forced-convection in fibrous media," Int. J. Heat Mass Transfer 31, 301-309 (1988).
[CrossRef]

J. Electron Packaging

A. Bhattacharya and R. L. Mahajan, "Finned metal foam heat sinks for electronics cooling in forced convection," J. Electron Packaging 124, 155-163 (2002).
[CrossRef]

J. Phys. E

S. R. Gunn, "Calorimetric measurements of laser energy and power," J. Phys. E 6, 105-114 (1973).
[CrossRef]

D. C. Emmony and J. C. S. Bunn, "An absolute calorimeter for the measurement of CO2 laser power," J. Phys. E 9, 621-622 (1976).
[CrossRef]

Mech. Mater.

K. Boomsma, D. Poulikakos, and F. Zwick, "Metal foams as compact high performance heat exchangers," Mech. Mater. 35, 1161-1176 (2003).
[CrossRef]

Proc. SPIE

G. W. Day, "Metrology for the optoelectronics industry," Proc. SPIE 4450, 33-43 (2001).
[CrossRef]

Rev. Sci. Instrum.

G. A. Fisk and M. A. Gusinow, "Circulated-liquid calorimeter for the detection of high-power and high-energy pulsed laser signals," Rev. Sci. Instrum. 48, 118-131 (1976).
[CrossRef]

H. J. J. Seguin, V. A. Seguin, A. K. Nath, and J. Radzion, "Spinning water film power meter for high-power cw lasers," Rev. Sci. Instrum. 57, 185-190 (1985).
[CrossRef]

Other

M. Kaviany, Principles of Heat Transfer in Porous Media (Springer-Verlag, 1991).
[CrossRef]

W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, 1989), pp. 7.78-7.80.

F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th ed. (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two-dimensional top-view cross section of the foam-based thermal detector used in the experiments.

Fig. 2
Fig. 2

Visual damage threshold comparison for silicon carbide and vitreous carbon foams as a function of flow velocity.

Fig. 3
Fig. 3

Optical microscopy image of (A) unexposed and (B) exposed silicon carbide foam sample. The exposed sample shows burnout of the foam sample, as is evident from the gaps in the foam network.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

1.6 × 10 4 W / cm 2
2   mm
96 %
1.064 μ m
10 4 W / cm 2
1   MJ
50   W
250 W / cm 2
90 %
97 %
( 76   mm × 38   mm × 38   mm )
( 25   mm × 13   mm × 6.4   mm )
( 75   mm × 40   mm × 6   mm )
1.064 μ m
10   mm
2   mm ± 0.1   mm
± 15 %
1.62 × 10 4 W / cm 2
142 cm / s
1.41 × 10 4 W / cm 2
96 %
3 %
99 %
1500   K
1000   K
0.05   W   m 1 K 1
2.8   W   m 1 K 1
1.62 × 10 4 W / cm 2
95 %
2   mm

Metrics