Abstract

We report the application of optical frequency domain reflectometry and a discrete-layer-peeling inverse scattering algorithm to the spatial characterization of the UV induced complex coupling coefficient during fiber Bragg grating growth. The fiber grating is rapidly characterized using this technique to give irradiance dependent growth as a function of exposure time, thereby providing the complete characterization of the coupling coefficient in the form of a “growth surface,” which is related to the fiber's photosensitivity. We compare measurements of fiber Bragg grating growth in SMF-28 when exposed to continuous wave 244  nm irradiation from 0 to 90  W  cm2 for exposure times up to 3230 s with a selection of other fibers including high germanium concentration fiber and erbium doped fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Experimental investigation of link between growth and decay of fiber Bragg gratings

Balaji Srinivasan, V. J. Vishnu Prasad, Rajesh Joseph, S. Asokan, and Nirmal K. Viswanathan
Appl. Opt. 50(21) 4042-4047 (2011)

Mechanisms of Bragg grating formation in UV hypersensitized standard germanosilicate fibers with KrF laser light

Matthieu Lancry, Pierre Niay, Marc Douay, and Bertrand Poumellec
J. Opt. Soc. Am. B 23(8) 1556-1564 (2006)

Analysis on the saturation of refractive index modulation in fiber Bragg gratings (FBGs) written by partially coherent UV beams

Ramakanta Mahakud, Om Prakash, Shankar V. Nakhe, and Sudhir Kumar Dixit
Appl. Opt. 51(12) 1828-1835 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription