Abstract

The development of an interband cascade laser (ICL) based spectroscopic trace-gas sensor for the simultaneous detection of two atmospheric trace gases is reported. The sensor performance was evaluated using two ICLs capable of targeting formaldehyde (H 2CO) and ethane (C 2H 6). Minimum detection limits of 3.5  ppbV for H 2CO and 150  pptV for C 2H 6 was demonstrated with a 1   s integration time. The sensor was deployed for field measurements of H 2CO, and laboratory quantification of both formaldehyde and ethane are reported. A cross comparison of the atmospheric concentration data for H 2CO with data collected by a collocated commercial H 2CO sensor employing Hantzsch reaction based fluorometric detection was performed. These results show excellent agreement between these two different approaches for trace-gas quantification. In addition, laboratory experiments for dual gas quantification show accurate, fast response with no crosstalk between the two gas channels.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Loewenstein, H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, and J. Marmie, "Argus: a new instrument for the measurement of the stratospheric dynamical tracers, N2O and CH4," Spectrochim. Acta Part A 58, 2329-2345 (2002).
    [CrossRef]
  2. A. Fried, J. R. Drummond, B. Henry, and J. Fox, "Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS," Appl. Opt. 30, 1916-1932 (1991).
    [CrossRef] [PubMed]
  3. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Using a wavelength-modulated quantum cascade laser to measure NO Concentrations in the parts-per-billion range for vehicle emissions certification," Appl. Spectrosc. 56, 706-714 (2002).
    [CrossRef]
  4. G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
    [CrossRef]
  5. A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Koehler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser," Appl. Phys. B 74, 95-99 (2002).
    [CrossRef] [PubMed]
  6. D. Halmer, S. Thelen, P. Hering, and M. Muertz, "Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer," Appl. Phys. B 85, 437-443 (2006).
    [CrossRef]
  7. S. C. Herndon, D. D. Nelson, Jr., Y. Li, and M.S. Zahniser, "Determination of line strengths for selected transitions in the v2 band relative to the v1 and v5 bands of H2CO," J. Quant. Spectrosc. Radiat. Transfer 90, 207-216 (2005).
    [CrossRef]
  8. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, "Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies," Appl. Phys. B 67, 317-330 (1998).
    [CrossRef]
  9. K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 1034 (2006).
    [CrossRef]
  10. W. W. Bewley, C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating to 269 K at λ = 4.05 μm," Electron. Lett. 43, 39-40 (2007).
    [CrossRef]
  11. C. L. Canedy, W. W. Bewley, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "High-temperature interband cascade lasers emitting at lambda = 3.6-4.3 μm," Appl. Phys. Lett. 90, 181120 (2007).
    [CrossRef]
  12. R. Q. Yang, C. J. Hill, K. Mansour, Y. Qiu, A. Soibel, R. Muller, and P. Echternach, "Distributed feedback mid-infrared interband cascade lasers at thermoelectric cooler temperatures," IEEE J. Sel. Top. Quantum Electron. (to be published).
  13. Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, "Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system," J. Geophys. Res. 109, D16S08 (2004).
    [CrossRef]
  14. R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, "Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer," Proc. SPIE 5738, 318-331 (2005).
    [CrossRef]
  15. D. B. Oh, M. E. Paige, and D. S. Bomse, "Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers," Appl. Opt. 37, 2499-2501 (1998).
    [CrossRef]
  16. P. Werle, "Signal processing strategies for tunable diode laser spectroscopy," Proc. SPIE 2112, 19-30 (1994).
    [CrossRef]
  17. C. P. Rinsland, N. B. Jones, B. J. Connor, S. W. Wood, A. Goldman, T. M. Stephen, F. J. Murcray, L. S. Chiou, R. Zander, and E. Mahieu, "Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2 tropospheric columns above Lauder, New Zealand (45°S latitude)," J. Geophys. Res. 107, 4185.1.1-4185.1.12 (2002).
  18. Y. Zhao, K. Strong, Y. Kondo, M. Koike, Y. Matsumi, H. Irie, C. P. Rinsland, N. B. Jones, K. Suzuki, H. Nakajima, H. Nakane, and I. Murata, "Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan," J. Geophys. Res. 107, 4343.2.1-4343.2.13 (2002).
  19. L. I. Kleinman, P. H. Daum, D. Imre, Y. N. Lee, J. L. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, "Ozone production rates and hydrocarbon reactivity in five urban areas: a cause for high ozone concentrations in Houston," Geophys. Res. Lett. 29, 1467.105.1-1467.105.4 (2002).
    [CrossRef]
  20. T. B. Ryerson, M. Trainer, W. M. Angevine, C. A. Brock, R. W. Dissly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, R. O. Jakoubek, W. C. Kuster, J. A. Neuman, D. K. Nicks, D. D. Parrish, J. M. Roberts, and D. T. Sueper "Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas," J. Geophys. Res. 108, 4249.8.1-4249.8.24 (2003).
    [CrossRef]
  21. http://www.permapure.com/TechNotes/Formaldehyde.htm.
  22. Texas Commission on Environmental Quality (2006) Point Source Emission Inventory Database, provided by TCEQ Technical Analysis Division, Austin, TX.

2007

W. W. Bewley, C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating to 269 K at λ = 4.05 μm," Electron. Lett. 43, 39-40 (2007).
[CrossRef]

C. L. Canedy, W. W. Bewley, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "High-temperature interband cascade lasers emitting at lambda = 3.6-4.3 μm," Appl. Phys. Lett. 90, 181120 (2007).
[CrossRef]

2006

D. Halmer, S. Thelen, P. Hering, and M. Muertz, "Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer," Appl. Phys. B 85, 437-443 (2006).
[CrossRef]

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 1034 (2006).
[CrossRef]

2005

S. C. Herndon, D. D. Nelson, Jr., Y. Li, and M.S. Zahniser, "Determination of line strengths for selected transitions in the v2 band relative to the v1 and v5 bands of H2CO," J. Quant. Spectrosc. Radiat. Transfer 90, 207-216 (2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, "Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer," Proc. SPIE 5738, 318-331 (2005).
[CrossRef]

2004

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, "Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system," J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

2003

T. B. Ryerson, M. Trainer, W. M. Angevine, C. A. Brock, R. W. Dissly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, R. O. Jakoubek, W. C. Kuster, J. A. Neuman, D. K. Nicks, D. D. Parrish, J. M. Roberts, and D. T. Sueper "Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas," J. Geophys. Res. 108, 4249.8.1-4249.8.24 (2003).
[CrossRef]

2002

C. P. Rinsland, N. B. Jones, B. J. Connor, S. W. Wood, A. Goldman, T. M. Stephen, F. J. Murcray, L. S. Chiou, R. Zander, and E. Mahieu, "Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2 tropospheric columns above Lauder, New Zealand (45°S latitude)," J. Geophys. Res. 107, 4185.1.1-4185.1.12 (2002).

Y. Zhao, K. Strong, Y. Kondo, M. Koike, Y. Matsumi, H. Irie, C. P. Rinsland, N. B. Jones, K. Suzuki, H. Nakajima, H. Nakane, and I. Murata, "Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan," J. Geophys. Res. 107, 4343.2.1-4343.2.13 (2002).

L. I. Kleinman, P. H. Daum, D. Imre, Y. N. Lee, J. L. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, "Ozone production rates and hydrocarbon reactivity in five urban areas: a cause for high ozone concentrations in Houston," Geophys. Res. Lett. 29, 1467.105.1-1467.105.4 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Koehler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser," Appl. Phys. B 74, 95-99 (2002).
[CrossRef] [PubMed]

M. Loewenstein, H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, and J. Marmie, "Argus: a new instrument for the measurement of the stratospheric dynamical tracers, N2O and CH4," Spectrochim. Acta Part A 58, 2329-2345 (2002).
[CrossRef]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Using a wavelength-modulated quantum cascade laser to measure NO Concentrations in the parts-per-billion range for vehicle emissions certification," Appl. Spectrosc. 56, 706-714 (2002).
[CrossRef]

1998

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, "Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies," Appl. Phys. B 67, 317-330 (1998).
[CrossRef]

D. B. Oh, M. E. Paige, and D. S. Bomse, "Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers," Appl. Opt. 37, 2499-2501 (1998).
[CrossRef]

1994

P. Werle, "Signal processing strategies for tunable diode laser spectroscopy," Proc. SPIE 2112, 19-30 (1994).
[CrossRef]

1991

Appl. Opt.

Appl. Phys. B

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, "Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies," Appl. Phys. B 67, 317-330 (1998).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Koehler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser," Appl. Phys. B 74, 95-99 (2002).
[CrossRef] [PubMed]

D. Halmer, S. Thelen, P. Hering, and M. Muertz, "Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer," Appl. Phys. B 85, 437-443 (2006).
[CrossRef]

Appl. Phys. Lett.

C. L. Canedy, W. W. Bewley, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "High-temperature interband cascade lasers emitting at lambda = 3.6-4.3 μm," Appl. Phys. Lett. 90, 181120 (2007).
[CrossRef]

Appl. Spectrosc.

Electron. Lett.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 1034 (2006).
[CrossRef]

W. W. Bewley, C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating to 269 K at λ = 4.05 μm," Electron. Lett. 43, 39-40 (2007).
[CrossRef]

Geophys. Res. Lett.

L. I. Kleinman, P. H. Daum, D. Imre, Y. N. Lee, J. L. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, "Ozone production rates and hydrocarbon reactivity in five urban areas: a cause for high ozone concentrations in Houston," Geophys. Res. Lett. 29, 1467.105.1-1467.105.4 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Q. Yang, C. J. Hill, K. Mansour, Y. Qiu, A. Soibel, R. Muller, and P. Echternach, "Distributed feedback mid-infrared interband cascade lasers at thermoelectric cooler temperatures," IEEE J. Sel. Top. Quantum Electron. (to be published).

J. Geophys. Res.

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, "Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system," J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

C. P. Rinsland, N. B. Jones, B. J. Connor, S. W. Wood, A. Goldman, T. M. Stephen, F. J. Murcray, L. S. Chiou, R. Zander, and E. Mahieu, "Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2 tropospheric columns above Lauder, New Zealand (45°S latitude)," J. Geophys. Res. 107, 4185.1.1-4185.1.12 (2002).

Y. Zhao, K. Strong, Y. Kondo, M. Koike, Y. Matsumi, H. Irie, C. P. Rinsland, N. B. Jones, K. Suzuki, H. Nakajima, H. Nakane, and I. Murata, "Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan," J. Geophys. Res. 107, 4343.2.1-4343.2.13 (2002).

T. B. Ryerson, M. Trainer, W. M. Angevine, C. A. Brock, R. W. Dissly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, R. O. Jakoubek, W. C. Kuster, J. A. Neuman, D. K. Nicks, D. D. Parrish, J. M. Roberts, and D. T. Sueper "Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas," J. Geophys. Res. 108, 4249.8.1-4249.8.24 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

S. C. Herndon, D. D. Nelson, Jr., Y. Li, and M.S. Zahniser, "Determination of line strengths for selected transitions in the v2 band relative to the v1 and v5 bands of H2CO," J. Quant. Spectrosc. Radiat. Transfer 90, 207-216 (2005).
[CrossRef]

Proc. SPIE

P. Werle, "Signal processing strategies for tunable diode laser spectroscopy," Proc. SPIE 2112, 19-30 (1994).
[CrossRef]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, "Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer," Proc. SPIE 5738, 318-331 (2005).
[CrossRef]

Spectrochim. Acta Part A

M. Loewenstein, H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, and J. Marmie, "Argus: a new instrument for the measurement of the stratospheric dynamical tracers, N2O and CH4," Spectrochim. Acta Part A 58, 2329-2345 (2002).
[CrossRef]

Other

http://www.permapure.com/TechNotes/Formaldehyde.htm.

Texas Commission on Environmental Quality (2006) Point Source Emission Inventory Database, provided by TCEQ Technical Analysis Division, Austin, TX.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic configuration of a dual ICL based trace gas sensor:ICL, interband cascade laser chip; DCM, dichroic mirror; BS, pellicle beam splitter; MCT, mercury-cadmium-telluride photodetector; CL, collimating lens; PM, off-axis parabolic mirror; OT, optical telescope, NI-DAQ, National Instruments data acquisition card.

Fig. 2
Fig. 2

(Color online) Simulated absorption spectrum of 10 ppbV H 2 CO near 3.56 μ m showing interferences including H 2 O (1000 ppm), CH 4 (2 ppm) and N 2 O (300 ppbV) at 75 Torr and with a 100   m effective optical path length.

Fig. 3
Fig. 3

(Color online) Simulated absorption spectrum of 1 ppbV C 2 H 6 near 3.33 μ m showing interferences including H 2 O (3%), and CH 4 (2 ppm) at 75   Torr and with a 100 m effective optical path length.

Fig. 4
Fig. 4

Continuous monitoring of C 2 H 6 performed over period of 20   min with a zero gas and 10   min with 100   ppbV mixture of C 2 H 6 in N 2 flowing through the sensor system.

Fig. 5
Fig. 5

(Color online) (a) Optical sensor response for two-channel operation targeting ethane ( 3.33 μ m ) and formaldehyde ( 3.56 μ m ) . The initial gas mixture of 330   ppbV   H 2 CO and 79   ppbV   C 2 H 6 is gradually diluted by pure N 2 . (b) Concentration measurements of ethane and formaldehyde normalized to their initial concentration level versus the dilution ratio (the error bars correspond to the precision of the dilution process).

Fig. 6
Fig. 6

(Color online) Two-channel optical sensor response to ethane and formaldehyde concentration in case of dilution of the initial gas mixture (same as in Fig. 5) with a mixture of 100 ppbV   C 2 H 6 in N 2 .

Fig. 7
Fig. 7

(Color online) Continuous measurements of H 2 CO collected during 5.5 day period with atmospheric data acquired at the sampling site.

Fig. 8
Fig. 8

(Color online) Mean level and maximum level of H 2 CO concentration (ppbV) versus wind direction calculated using data from Fig. 7 (data averaged within 15° angles). The map on the right shows the sampling site (marked with “☆”) and major VOC sources in the Greater Houston area, Harris County [22].

Fig. 9
Fig. 9

(Color online) Measurements of H 2 CO collected during 2 week period with ICL-based trace gas sensor and with Hantzsch reaction based fluorometric detector. The inset shows a correlation of R = 0.7734 between data collected by the two different sensors located at the same sampling site.

Metrics