Abstract

A 1×4 3D broadband polymer optical waveguide switch matrix is demonstrated. The fabricated device, which contains four vertically coupled thermo-optic switches, has a compact construction (only 9mm in length) and a power consumption of 45mW. Compared with the corresponding planar ones, this 3D switch matrix has two distinct features. First, the light signal can be easily switched to any output port by operating only a single switch unit. Second, the switching extinction ratio, cross talk, and insertion loss of this matrix are practically wavelength independent over the whole C band. We also show that this structure can be extended quite simply to an M×M nonblocking switch matrix.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical switching: switch fabrics, techniques, and architectures," J. Lightwave Technol. 21, 384-405 (2003).
    [CrossRef]
  2. R. Varrazza, I. B. Djordjevic, and S. Y. Yu, "Active vertical-coupler-based optical crosspoint switch matrix for optical packet-switching applications," J. Lightwave Technol. 22, 2034-2042 (2004).
    [CrossRef]
  3. K. X. Chen, P. L. Chu, and H. P. Chan, "A vertically coupled polymer optical waveguide switch," Opt. Commun. 244, 153-158 (2005).
    [CrossRef]
  4. K. X. Chen, P. L. Chu, K. S. Chiang, and H. P. Chan, "Design and fabrication of a broadband polymer vertically coupled optical switch," J. Lightwave Technol. 24, 904-911 (2006).
    [CrossRef]
  5. H. C. Song, S. Y. Shin, W. H. Jang, and T. H. Rhee, "1×4 thermo-optic switch based on four-branch waveguide," Electron. Lett. 35, 1546-1547 (1999).
    [CrossRef]
  6. Y. Hida, H. Onose, and S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm," IEEE Photon. Technol. Lett. 5, 782-784 (1993).
    [CrossRef]
  7. W. Kabaciński, Nonblocking Electronic and Photonic Switching Fabrics (Springer, 2005), pp. 54-55.
  8. K. X. Chen, P. L. Chu, K. S. Chiang, and H. P. Chan, "Design and fabrication of a three-dimensional polymer optical waveguide splitter," Opt. Commun. 250, 297-301 (2005).
    [CrossRef]
  9. L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
    [CrossRef]
  10. N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "4×4 polymer thermo-optic directional coupler switch at 1.55 μm," Electron. Lett. 30, 639-640 (1994).
    [CrossRef]
  11. N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55 μm," Electron. Lett. 31, 403-404 (1995).
    [CrossRef]
  12. L. Guiziou, P. Ferm, J.-M. Jouanno, and L. Shacklette, "Low-loss and high extinction ratio 4×4 polymer thermo-optical switch," in Proceedings of the 27th European Conference on Optical Communications (ECOC'01 2001) (IEEE, 2001), pp. 138-139.

2006

2005

K. X. Chen, P. L. Chu, and H. P. Chan, "A vertically coupled polymer optical waveguide switch," Opt. Commun. 244, 153-158 (2005).
[CrossRef]

K. X. Chen, P. L. Chu, K. S. Chiang, and H. P. Chan, "Design and fabrication of a three-dimensional polymer optical waveguide splitter," Opt. Commun. 250, 297-301 (2005).
[CrossRef]

2004

2003

2000

L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

1999

H. C. Song, S. Y. Shin, W. H. Jang, and T. H. Rhee, "1×4 thermo-optic switch based on four-branch waveguide," Electron. Lett. 35, 1546-1547 (1999).
[CrossRef]

1995

N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55 μm," Electron. Lett. 31, 403-404 (1995).
[CrossRef]

1994

N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "4×4 polymer thermo-optic directional coupler switch at 1.55 μm," Electron. Lett. 30, 639-640 (1994).
[CrossRef]

1993

Y. Hida, H. Onose, and S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm," IEEE Photon. Technol. Lett. 5, 782-784 (1993).
[CrossRef]

Electron. Lett.

H. C. Song, S. Y. Shin, W. H. Jang, and T. H. Rhee, "1×4 thermo-optic switch based on four-branch waveguide," Electron. Lett. 35, 1546-1547 (1999).
[CrossRef]

N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "4×4 polymer thermo-optic directional coupler switch at 1.55 μm," Electron. Lett. 30, 639-640 (1994).
[CrossRef]

N. Ked, H. H. Yao, C. Zawadski, and B. Strebel, "Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55 μm," Electron. Lett. 31, 403-404 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Hida, H. Onose, and S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm," IEEE Photon. Technol. Lett. 5, 782-784 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

K. X. Chen, P. L. Chu, K. S. Chiang, and H. P. Chan, "Design and fabrication of a three-dimensional polymer optical waveguide splitter," Opt. Commun. 250, 297-301 (2005).
[CrossRef]

K. X. Chen, P. L. Chu, and H. P. Chan, "A vertically coupled polymer optical waveguide switch," Opt. Commun. 244, 153-158 (2005).
[CrossRef]

Other

W. Kabaciński, Nonblocking Electronic and Photonic Switching Fabrics (Springer, 2005), pp. 54-55.

L. Guiziou, P. Ferm, J.-M. Jouanno, and L. Shacklette, "Low-loss and high extinction ratio 4×4 polymer thermo-optical switch," in Proceedings of the 27th European Conference on Optical Communications (ECOC'01 2001) (IEEE, 2001), pp. 138-139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a 3D 1 × 4 polymer optical waveguide switch matrix.

Fig. 2
Fig. 2

Basic optical switch unit: (a) perspective view, (b) cross-sectional view, and (c) top view.

Fig. 3
Fig. 3

Extinction ratio characteristics of the four output ports.

Fig. 4
Fig. 4

Cross-talk characteristics between adjacent output ports.

Fig. 5
Fig. 5

Insertion loss at each output port.

Fig. 6
Fig. 6

Switching speed of the matrix.

Fig. 7
Fig. 7

Schematic of a 3D 4 × 4 waveguide switch matrix.

Tables (1)

Tables Icon

Table 1 Refractive Indices and Material Birefringence of Polymers Used (Measured at 1550 nm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E R i = 10 log P i O N P i O F F .
C T K i j = 10 log P j P i ,

Metrics