Abstract

Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. P. Sorokin and J. R. Lankard, "Stimulated emission observed from an organic dye chloro-aluminum Phthalocyanine," IBM J. Res. Dev. 10, 162-163 (1966).
    [CrossRef]
  2. P. P. Sorokin, W. H. Culver, E. C. Hammond, and J. R. Lankard, "End pumped stimulated emission from a Thiacarbocyanine dye," IBM J. Res. Dev. 10, 401 (1966).
    [CrossRef]
  3. F. P. Schafer, W. Schmidt, and J. Volze, "Organic dye solution laser," Appl. Phys. Lett. 9, 306-309 (1966).
    [CrossRef]
  4. M. R. Spaeth and D. P. Bortfeld, "Stimulated emission from polymethine dyes," Appl. Phys. Lett. 9, 179-181 (1966).
    [CrossRef]
  5. B. B. McFarland, "Laser second-harmonic induced stimulated emission of organic dyes," Appl. Phys. Lett. 10, 208-209 (1967).
    [CrossRef]
  6. B. H. Soffer and B. B. McFarland, "Continuously tunable, narrow band organic dye lasers," Appl. Phys. Lett. 10, 266-267 (1967).
    [CrossRef]
  7. O. G. Peterson and B. B. Snavely, "Stimulated emission from flashlamp-excited organic dyes in poly methylmethacrylate," Appl. Phys. Lett. 12, 238-240 (1968).
    [CrossRef]
  8. G. D. Peng, P. K. Chu, Z. Xiong, T. Whitebread, and R. P. Chaplin, "Dye doped step index polymer optical fiber for broad band optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
    [CrossRef]
  9. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, "Polymer optical fiber amplifier," Appl. Phys. Lett. 63, 883-884 (1993).
    [CrossRef]
  10. G. Somasundaram and A. Ramalingam, "Gain studies of coumarin 307 dye doped polymer laser," Opt. Laser Technol. 31, 351-358 (1999).
    [CrossRef]
  11. S. Balslev, A. Mironov, D. Nilsson, and A. Kristensen, "Microfabricated single mode polymer dye laser," Opt. Express 14, 2170-2177 (2006).
    [CrossRef] [PubMed]
  12. Y. Huang, T.-H. Lin, Y. Zhou, and S.-T. Wu, "Enhancing the laser power by stacking multiple dye-doped chiral polymer films," Opt. Express 14, 11299-11303 (2006).
    [CrossRef] [PubMed]
  13. M. Ahmad, T. A. King, D.-K. Ko, B. H. Cha, and J. Lee, "Highly photostable laser solution and solid-state media based on mixed pyrromethene and coumarin," Opt. Laser Technol. 34, 445-448 (2002).
    [CrossRef]
  14. K. Kuriki, Y. Koike, and Y. Okamoto, "Plastic optical fiber lasers and amplifiers containing lanthanide complexes," Chem. Rev. 102, 2347-2356 (2002).
    [CrossRef] [PubMed]
  15. J. Zubia and J. Arrue, "Plastic optical fibers: an introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001).
    [CrossRef]
  16. Q. J. Zhang, P. Wang, X. F. Sun, Y. Zhai, and P. Dai, "Amplified spontaneous emission of an Nd3+ doped poly methyl methacrylate optical fiber at ambient temperature," Appl. Phys. Lett. 72, 407-409 (1998).
    [CrossRef]
  17. M. R. Sheeba, K. Geetha, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, "Fabrication and characterization of dye doped polymer optical fiber as a light amplifier," Appl. Opt. 46, 106-112 (2007).
    [CrossRef]
  18. S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, "Tunable laser by sheet of dye doped plastic fibers," IEICE Trans. J70-C, 1479-1484 (1987).
  19. R. Gvishi, G. Ruland, and P. N. Prasad, "New laser medium: dye-doped sol-gel fiber," Opt. Commun. 126, 66-72 (1996).
    [CrossRef]
  20. K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High efficiency organic dye doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
    [CrossRef]
  21. K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye doped polymer optical fiber laser," Polym. Adv. Technol. 11, 612-616 (2000).
    [CrossRef]
  22. K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Laser emission from transversely pumped dye-doped free-standing polymer film," J. Opt. A 8, 189-193 (2006).
    [CrossRef]
  23. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, "Polymer microdisc and microring lasers," Opt. Lett. 20, 2093-2095 (1995).
    [CrossRef] [PubMed]
  24. A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Super narrowing mirrorless laser emission in dendrimer doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
    [CrossRef]
  25. M. Fakis, I. Polyzos, G. Tsigaridas, V. Giannetas, P. Persephonis, I. Spiliopoulos, and J. Mikroyannidis, "Laser action of two conjugated polymers in solution and in solid matrix: the effect of aggregates on spontaneous and stimulated emission," Phys Rev B 65, 195203-195210 (2002).
    [CrossRef]
  26. R. Sailaja and P. B. Bisht, "Tunable multiline distributed feedback dye laser based on the phenomenon of excitation energy transfer," Org. Electron. 8, 175-183 (2007).
    [CrossRef]
  27. Y. Yang, G. Lin, J. Zou, Z. Wang, M. Wang, and G. Qian, "Enhanced laser performances based on energy transfer in multi-dyes co-doped solid media," Opt. Commun. 277, 138-142 (2007).
    [CrossRef]
  28. G. A. Kumar, V. Thomas, G. Thomas, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G: Rh B system in PMMA matrix under CW laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
    [CrossRef]
  29. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
    [CrossRef]
  30. R. G. Bennet, "Radiationless intermolecular energy transfer singlet-singlet transfer," J. Chem. Phys. 41, 3037-3040 (1964).
    [CrossRef]
  31. T. Forster, "Transfer mechanisms of electronic excitations," Discuss. Faraday Soc. 27, 7-17 (1959).
  32. E. Sahar and D. Treves, "Excited singlet-state absorption in dyes and their effect on dye lasers," IEEE J. Quantum Electron. 13, 962-967 (1977).
    [CrossRef]
  33. N. V. Unnikrishnan, H. S. Bhatti, and R. D. Singh, "Energy transfer in dye mixtures studied by laser fluorimetry," J. Mod. Opt. 31, 983-987 (1984).
  34. D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, M. G. Kuzyk, J. Sounick, and C. W. Dirk, "Single-mode nonlinear-optical polymer fibers," J. Opt. Soc. Am. B 13, 2017-2023 (1996).
    [CrossRef]
  35. P. J. Sebastian and K. Sathianandan, "Donor concentration dependence of the emission peak in rhodamine 6G-rhodamine B energy transfer dye laser," Opt. Commun. 35, 113-114 (1980).
    [CrossRef]
  36. S. V. Frolov and Z. V. Vardeny, "Plastic microring lasers on fibers and wires," Appl. Phys. Lett. 72, 1802-1804 (1998).
    [CrossRef]
  37. R. C. Polson, G. Levina, and Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
    [CrossRef]
  38. S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, "Ring microlasers from conducting polymers," Phy. Rev. B 56, 4363-4366 (1997).
    [CrossRef]
  39. R. J. Nedumpara, K. Geetha, V. J. Dann, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Light amplification in dye doped polymer films," J. Opt. A 9, 174-179 (2007).
    [CrossRef]
  40. S. Yokoyama, A. Otamo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
    [CrossRef]
  41. M. Rajesh, K. Geetha, M. Sheeba, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, "Characterisation of rhodamine 6G doped polymer optical fiber by side illumination fluorescence," Opt. Eng. 45, 075003 (2006).
    [CrossRef]

2007 (4)

R. Sailaja and P. B. Bisht, "Tunable multiline distributed feedback dye laser based on the phenomenon of excitation energy transfer," Org. Electron. 8, 175-183 (2007).
[CrossRef]

Y. Yang, G. Lin, J. Zou, Z. Wang, M. Wang, and G. Qian, "Enhanced laser performances based on energy transfer in multi-dyes co-doped solid media," Opt. Commun. 277, 138-142 (2007).
[CrossRef]

R. J. Nedumpara, K. Geetha, V. J. Dann, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Light amplification in dye doped polymer films," J. Opt. A 9, 174-179 (2007).
[CrossRef]

M. R. Sheeba, K. Geetha, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, "Fabrication and characterization of dye doped polymer optical fiber as a light amplifier," Appl. Opt. 46, 106-112 (2007).
[CrossRef]

2006 (4)

S. Balslev, A. Mironov, D. Nilsson, and A. Kristensen, "Microfabricated single mode polymer dye laser," Opt. Express 14, 2170-2177 (2006).
[CrossRef] [PubMed]

Y. Huang, T.-H. Lin, Y. Zhou, and S.-T. Wu, "Enhancing the laser power by stacking multiple dye-doped chiral polymer films," Opt. Express 14, 11299-11303 (2006).
[CrossRef] [PubMed]

M. Rajesh, K. Geetha, M. Sheeba, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, "Characterisation of rhodamine 6G doped polymer optical fiber by side illumination fluorescence," Opt. Eng. 45, 075003 (2006).
[CrossRef]

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Laser emission from transversely pumped dye-doped free-standing polymer film," J. Opt. A 8, 189-193 (2006).
[CrossRef]

2002 (5)

M. Fakis, I. Polyzos, G. Tsigaridas, V. Giannetas, P. Persephonis, I. Spiliopoulos, and J. Mikroyannidis, "Laser action of two conjugated polymers in solution and in solid matrix: the effect of aggregates on spontaneous and stimulated emission," Phys Rev B 65, 195203-195210 (2002).
[CrossRef]

G. A. Kumar, V. Thomas, G. Thomas, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G: Rh B system in PMMA matrix under CW laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

M. Ahmad, T. A. King, D.-K. Ko, B. H. Cha, and J. Lee, "Highly photostable laser solution and solid-state media based on mixed pyrromethene and coumarin," Opt. Laser Technol. 34, 445-448 (2002).
[CrossRef]

K. Kuriki, Y. Koike, and Y. Okamoto, "Plastic optical fiber lasers and amplifiers containing lanthanide complexes," Chem. Rev. 102, 2347-2356 (2002).
[CrossRef] [PubMed]

S. Yokoyama, A. Otamo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

2001 (1)

J. Zubia and J. Arrue, "Plastic optical fibers: an introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001).
[CrossRef]

2000 (4)

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High efficiency organic dye doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye doped polymer optical fiber laser," Polym. Adv. Technol. 11, 612-616 (2000).
[CrossRef]

A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Super narrowing mirrorless laser emission in dendrimer doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
[CrossRef]

R. C. Polson, G. Levina, and Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

1999 (1)

G. Somasundaram and A. Ramalingam, "Gain studies of coumarin 307 dye doped polymer laser," Opt. Laser Technol. 31, 351-358 (1999).
[CrossRef]

1998 (2)

Q. J. Zhang, P. Wang, X. F. Sun, Y. Zhai, and P. Dai, "Amplified spontaneous emission of an Nd3+ doped poly methyl methacrylate optical fiber at ambient temperature," Appl. Phys. Lett. 72, 407-409 (1998).
[CrossRef]

S. V. Frolov and Z. V. Vardeny, "Plastic microring lasers on fibers and wires," Appl. Phys. Lett. 72, 1802-1804 (1998).
[CrossRef]

1997 (1)

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, "Ring microlasers from conducting polymers," Phy. Rev. B 56, 4363-4366 (1997).
[CrossRef]

1996 (3)

R. Gvishi, G. Ruland, and P. N. Prasad, "New laser medium: dye-doped sol-gel fiber," Opt. Commun. 126, 66-72 (1996).
[CrossRef]

G. D. Peng, P. K. Chu, Z. Xiong, T. Whitebread, and R. P. Chaplin, "Dye doped step index polymer optical fiber for broad band optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, M. G. Kuzyk, J. Sounick, and C. W. Dirk, "Single-mode nonlinear-optical polymer fibers," J. Opt. Soc. Am. B 13, 2017-2023 (1996).
[CrossRef]

1995 (1)

1993 (1)

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, "Polymer optical fiber amplifier," Appl. Phys. Lett. 63, 883-884 (1993).
[CrossRef]

1987 (1)

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, "Tunable laser by sheet of dye doped plastic fibers," IEICE Trans. J70-C, 1479-1484 (1987).

1984 (1)

N. V. Unnikrishnan, H. S. Bhatti, and R. D. Singh, "Energy transfer in dye mixtures studied by laser fluorimetry," J. Mod. Opt. 31, 983-987 (1984).

1980 (1)

P. J. Sebastian and K. Sathianandan, "Donor concentration dependence of the emission peak in rhodamine 6G-rhodamine B energy transfer dye laser," Opt. Commun. 35, 113-114 (1980).
[CrossRef]

1977 (1)

E. Sahar and D. Treves, "Excited singlet-state absorption in dyes and their effect on dye lasers," IEEE J. Quantum Electron. 13, 962-967 (1977).
[CrossRef]

1968 (1)

O. G. Peterson and B. B. Snavely, "Stimulated emission from flashlamp-excited organic dyes in poly methylmethacrylate," Appl. Phys. Lett. 12, 238-240 (1968).
[CrossRef]

1967 (2)

B. B. McFarland, "Laser second-harmonic induced stimulated emission of organic dyes," Appl. Phys. Lett. 10, 208-209 (1967).
[CrossRef]

B. H. Soffer and B. B. McFarland, "Continuously tunable, narrow band organic dye lasers," Appl. Phys. Lett. 10, 266-267 (1967).
[CrossRef]

1966 (4)

P. P. Sorokin and J. R. Lankard, "Stimulated emission observed from an organic dye chloro-aluminum Phthalocyanine," IBM J. Res. Dev. 10, 162-163 (1966).
[CrossRef]

P. P. Sorokin, W. H. Culver, E. C. Hammond, and J. R. Lankard, "End pumped stimulated emission from a Thiacarbocyanine dye," IBM J. Res. Dev. 10, 401 (1966).
[CrossRef]

F. P. Schafer, W. Schmidt, and J. Volze, "Organic dye solution laser," Appl. Phys. Lett. 9, 306-309 (1966).
[CrossRef]

M. R. Spaeth and D. P. Bortfeld, "Stimulated emission from polymethine dyes," Appl. Phys. Lett. 9, 179-181 (1966).
[CrossRef]

1964 (1)

R. G. Bennet, "Radiationless intermolecular energy transfer singlet-singlet transfer," J. Chem. Phys. 41, 3037-3040 (1964).
[CrossRef]

1959 (1)

T. Forster, "Transfer mechanisms of electronic excitations," Discuss. Faraday Soc. 27, 7-17 (1959).

1953 (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (12)

F. P. Schafer, W. Schmidt, and J. Volze, "Organic dye solution laser," Appl. Phys. Lett. 9, 306-309 (1966).
[CrossRef]

M. R. Spaeth and D. P. Bortfeld, "Stimulated emission from polymethine dyes," Appl. Phys. Lett. 9, 179-181 (1966).
[CrossRef]

B. B. McFarland, "Laser second-harmonic induced stimulated emission of organic dyes," Appl. Phys. Lett. 10, 208-209 (1967).
[CrossRef]

B. H. Soffer and B. B. McFarland, "Continuously tunable, narrow band organic dye lasers," Appl. Phys. Lett. 10, 266-267 (1967).
[CrossRef]

O. G. Peterson and B. B. Snavely, "Stimulated emission from flashlamp-excited organic dyes in poly methylmethacrylate," Appl. Phys. Lett. 12, 238-240 (1968).
[CrossRef]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, "Polymer optical fiber amplifier," Appl. Phys. Lett. 63, 883-884 (1993).
[CrossRef]

Q. J. Zhang, P. Wang, X. F. Sun, Y. Zhai, and P. Dai, "Amplified spontaneous emission of an Nd3+ doped poly methyl methacrylate optical fiber at ambient temperature," Appl. Phys. Lett. 72, 407-409 (1998).
[CrossRef]

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High efficiency organic dye doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Super narrowing mirrorless laser emission in dendrimer doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
[CrossRef]

S. V. Frolov and Z. V. Vardeny, "Plastic microring lasers on fibers and wires," Appl. Phys. Lett. 72, 1802-1804 (1998).
[CrossRef]

R. C. Polson, G. Levina, and Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

S. Yokoyama, A. Otamo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

Chem. Rev. (1)

K. Kuriki, Y. Koike, and Y. Okamoto, "Plastic optical fiber lasers and amplifiers containing lanthanide complexes," Chem. Rev. 102, 2347-2356 (2002).
[CrossRef] [PubMed]

Discuss. Faraday Soc. (1)

T. Forster, "Transfer mechanisms of electronic excitations," Discuss. Faraday Soc. 27, 7-17 (1959).

IBM J. Res. Dev. (2)

P. P. Sorokin and J. R. Lankard, "Stimulated emission observed from an organic dye chloro-aluminum Phthalocyanine," IBM J. Res. Dev. 10, 162-163 (1966).
[CrossRef]

P. P. Sorokin, W. H. Culver, E. C. Hammond, and J. R. Lankard, "End pumped stimulated emission from a Thiacarbocyanine dye," IBM J. Res. Dev. 10, 401 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Sahar and D. Treves, "Excited singlet-state absorption in dyes and their effect on dye lasers," IEEE J. Quantum Electron. 13, 962-967 (1977).
[CrossRef]

IEICE Trans. (1)

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, "Tunable laser by sheet of dye doped plastic fibers," IEICE Trans. J70-C, 1479-1484 (1987).

J. Chem. Phys. (2)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

R. G. Bennet, "Radiationless intermolecular energy transfer singlet-singlet transfer," J. Chem. Phys. 41, 3037-3040 (1964).
[CrossRef]

J. Lightwave Technol. (1)

G. D. Peng, P. K. Chu, Z. Xiong, T. Whitebread, and R. P. Chaplin, "Dye doped step index polymer optical fiber for broad band optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

J. Mod. Opt. (1)

N. V. Unnikrishnan, H. S. Bhatti, and R. D. Singh, "Energy transfer in dye mixtures studied by laser fluorimetry," J. Mod. Opt. 31, 983-987 (1984).

J. Opt. A (2)

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Laser emission from transversely pumped dye-doped free-standing polymer film," J. Opt. A 8, 189-193 (2006).
[CrossRef]

R. J. Nedumpara, K. Geetha, V. J. Dann, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Light amplification in dye doped polymer films," J. Opt. A 9, 174-179 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. (1)

G. A. Kumar, V. Thomas, G. Thomas, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G: Rh B system in PMMA matrix under CW laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Opt. Commun. (3)

Y. Yang, G. Lin, J. Zou, Z. Wang, M. Wang, and G. Qian, "Enhanced laser performances based on energy transfer in multi-dyes co-doped solid media," Opt. Commun. 277, 138-142 (2007).
[CrossRef]

P. J. Sebastian and K. Sathianandan, "Donor concentration dependence of the emission peak in rhodamine 6G-rhodamine B energy transfer dye laser," Opt. Commun. 35, 113-114 (1980).
[CrossRef]

R. Gvishi, G. Ruland, and P. N. Prasad, "New laser medium: dye-doped sol-gel fiber," Opt. Commun. 126, 66-72 (1996).
[CrossRef]

Opt. Eng. (1)

M. Rajesh, K. Geetha, M. Sheeba, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, "Characterisation of rhodamine 6G doped polymer optical fiber by side illumination fluorescence," Opt. Eng. 45, 075003 (2006).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, "Plastic optical fibers: an introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001).
[CrossRef]

Opt. Laser Technol. (2)

G. Somasundaram and A. Ramalingam, "Gain studies of coumarin 307 dye doped polymer laser," Opt. Laser Technol. 31, 351-358 (1999).
[CrossRef]

M. Ahmad, T. A. King, D.-K. Ko, B. H. Cha, and J. Lee, "Highly photostable laser solution and solid-state media based on mixed pyrromethene and coumarin," Opt. Laser Technol. 34, 445-448 (2002).
[CrossRef]

Opt. Lett. (1)

Org. Electron. (1)

R. Sailaja and P. B. Bisht, "Tunable multiline distributed feedback dye laser based on the phenomenon of excitation energy transfer," Org. Electron. 8, 175-183 (2007).
[CrossRef]

Phy. Rev. B (1)

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, "Ring microlasers from conducting polymers," Phy. Rev. B 56, 4363-4366 (1997).
[CrossRef]

Phys Rev B (1)

M. Fakis, I. Polyzos, G. Tsigaridas, V. Giannetas, P. Persephonis, I. Spiliopoulos, and J. Mikroyannidis, "Laser action of two conjugated polymers in solution and in solid matrix: the effect of aggregates on spontaneous and stimulated emission," Phys Rev B 65, 195203-195210 (2002).
[CrossRef]

Polym. Adv. Technol. (1)

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye doped polymer optical fiber laser," Polym. Adv. Technol. 11, 612-616 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup to record the fluorescence emission from the fiber end. Pumping is done axially.

Fig. 2
Fig. 2

Shift of fluorescence emission peak due to energy transfer process in dye mixture doped POF: (a) Rh 6G (0.25 mM), (b) dye mixture Rh 6G (0.25 mM) and Rh B (0.11 mM), (c) dye mixture Rh 6G (0.25 mM) and Rh B (0.25 mM), and (d) Rh B (0.25 mM). Pump energy is 0.12 mJ∕pulse. Length of the POF is 7 cm and diameter is 510 μm.

Fig. 3
Fig. 3

Emission from 510 μm diameter and 7 cm long dye doped POF at a pump energy of (a) 0.12, (b) 0.23, (c) 0.34, (d) 0.43, (e) 0.68, and (f) 1.02 mJ .

Fig. 4
Fig. 4

Tuning of multimode laser emission peak with different dye concentrations. Rh 6G concentration is constant ( 0.25 mM ) in all three samples. Pump energy is 1.37 mJ / pulse . L = 7 cm and D = 510 μ m .

Fig. 5
Fig. 5

(a) Typical multimode laser emission spectrum at a pump energy of 0.47 mJ / pulse from a POF doped with equal concentrations ( 0.25 mM ) of Rh 6G and Rh B. (b) Expanded modes in (a).

Fig. 6
Fig. 6

Multimode laser emission from 7 cm long dye doped fiber at a pump energy 1.37 mJ / pulse . D = (a) 335, (b) 405, and (c) 510 μ m .

Fig. 7
Fig. 7

Multimode laser emission from 510 μm diameter dye doped POF at a pump energy of 1.37 mJ / pulse . z = (a) 2, (b) 4.5, (c) 7, (d) 9, and (e) 12 cm .

Fig. 8
Fig. 8

Variation of laser emission peak with length of the fiber having a diameter of 510 μ m at a pump energy of 1.37 mJ / pulse .

Tables (1)

Tables Icon

Table 1 Mode Spacing Dependence on Diameter of Fiber Based on the Microring Resonator Model a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 n L = λ 2 π n D ,

Metrics