Abstract

We demonstrate that the sensitivity limit of intensity-based surface plasmon resonance (SPR) biosensors can be enhanced when we combine the effects of the phase and amplitude contributions instead of detecting the amplitude variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems. The new measurement scheme may therefore lead to a strong impact in the design of SPR biosensors.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. L. Rich and D. G. Myszka, "Survey of the year 2004 commercial optical biosensor literature," J. Mol. Recognit. 18, 431-478 (2005).
    [CrossRef] [PubMed]
  2. W. Lukosz, "Principle and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosens. Bioelectron. 6, 215-225 (1991).
    [CrossRef]
  3. R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. Guntherodt, and C. Gerber, "Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array," Proc. Natl. Acad. Sci. U.S.A. 99, 9783-9788 (2002).
    [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
  5. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
    [CrossRef]
  6. S. Y. Wu, H. P. Ho, W. C. Law, and C. L. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
    [CrossRef] [PubMed]
  7. Y.-D. Su, S.-J. Chen, and T.-L. Yeh, "Common-path phase-shift interferometry surface plasmon resonance imaging system," Opt. Lett. 30, 1488-1490 (2005).
    [CrossRef] [PubMed]
  8. C. Chou, H. T. Wu, Y. C. Huang, and Y. L. Chen, "Characteristics of a paired surface plasma waves biosensor," Opt. Express 14, 4307-4315 (2006).
    [CrossRef] [PubMed]
  9. W.-C. Kuo, C. Chou, and H.-T. Wu, "Optical heterodyne surface-plasmon resonance biosensor," Opt. Lett. 28, 1329-1331 (2003).
    [CrossRef] [PubMed]
  10. M.-H. Chiu, S.-F. Wang, and R.-S. Chang, "D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry," Opt. Lett. 30, 233-235 (2005).
    [CrossRef] [PubMed]
  11. F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensor based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
    [CrossRef] [PubMed]
  12. X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, "Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification," Anal. Chem. 354, 220-228 (2006).
  13. H. P. Ho, W. C. Law, S. Y. Wu, X. H. Liu, S. P. Wong, C. Lin, and S. K. Kong, "Surface plasmon resonance biosensor based on measuring low-level birefringence using a photoelastic modulation technique," Sens. Actuators B 114, 80-84 (2006).
    [CrossRef]
  14. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. V. Kabashin, "Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing," Opt. Express 15, 1745-1754 (2007).
    [CrossRef] [PubMed]
  15. B. Ran and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006).
    [CrossRef] [PubMed]
  16. J. Homala, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  17. S. Ferretti, S. Paynter, D. A. Russell, and K. E. Sapsford, "Self-assembled monolayers: a versatile tool for the formation of bio-surfaces," Trends Anal. Chem. 19, 530-540 (2000).
    [CrossRef]

2007 (1)

2006 (4)

C. Chou, H. T. Wu, Y. C. Huang, and Y. L. Chen, "Characteristics of a paired surface plasma waves biosensor," Opt. Express 14, 4307-4315 (2006).
[CrossRef] [PubMed]

B. Ran and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006).
[CrossRef] [PubMed]

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, "Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification," Anal. Chem. 354, 220-228 (2006).

H. P. Ho, W. C. Law, S. Y. Wu, X. H. Liu, S. P. Wong, C. Lin, and S. K. Kong, "Surface plasmon resonance biosensor based on measuring low-level birefringence using a photoelastic modulation technique," Sens. Actuators B 114, 80-84 (2006).
[CrossRef]

2005 (3)

2004 (2)

S. Y. Wu, H. P. Ho, W. C. Law, and C. L. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
[CrossRef] [PubMed]

F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensor based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. Guntherodt, and C. Gerber, "Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array," Proc. Natl. Acad. Sci. U.S.A. 99, 9783-9788 (2002).
[CrossRef] [PubMed]

2000 (1)

S. Ferretti, S. Paynter, D. A. Russell, and K. E. Sapsford, "Self-assembled monolayers: a versatile tool for the formation of bio-surfaces," Trends Anal. Chem. 19, 530-540 (2000).
[CrossRef]

1999 (1)

J. Homala, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1991 (1)

W. Lukosz, "Principle and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosens. Bioelectron. 6, 215-225 (1991).
[CrossRef]

Anal. Chem. (1)

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, "Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification," Anal. Chem. 354, 220-228 (2006).

Biosens. Bioelectron. (2)

F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensor based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef] [PubMed]

W. Lukosz, "Principle and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosens. Bioelectron. 6, 215-225 (1991).
[CrossRef]

J. Mol. Recognit. (1)

R. L. Rich and D. G. Myszka, "Survey of the year 2004 commercial optical biosensor literature," J. Mol. Recognit. 18, 431-478 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. Guntherodt, and C. Gerber, "Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array," Proc. Natl. Acad. Sci. U.S.A. 99, 9783-9788 (2002).
[CrossRef] [PubMed]

Sens. Actuators B (2)

J. Homala, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

H. P. Ho, W. C. Law, S. Y. Wu, X. H. Liu, S. P. Wong, C. Lin, and S. K. Kong, "Surface plasmon resonance biosensor based on measuring low-level birefringence using a photoelastic modulation technique," Sens. Actuators B 114, 80-84 (2006).
[CrossRef]

Trends Anal. Chem. (1)

S. Ferretti, S. Paynter, D. A. Russell, and K. E. Sapsford, "Self-assembled monolayers: a versatile tool for the formation of bio-surfaces," Trends Anal. Chem. 19, 530-540 (2000).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of SPR cross interference setup.

Fig. 2
Fig. 2

Response of (a) I 1 and (b) I 2 versus | r p | 2 (reflectivity for p polarization) of the sensing beam as a function of refractive index variation. (Prism, BK7; laser, 632.8   nm ; Au film thickness, 50   nm ; incident angle, 72.3°.)

Fig. 3
Fig. 3

(a) Comparison of responses of χ 1 and | r p | 2 with the variation of angle at Au thickness of 50   nm . (b) Signal response of χ 1 with respect to varying RI for different Au layer thicknesses at an incident angle of 72.3°. (Prism, BK7; laser, 632.8   nm .)

Fig. 4
Fig. 4

Theoretical value of the LOD versus dynamic range with the variation of Au thickness. LOD here is defined by the average performance of the proposed scheme in the linear response range (dynamic range, i.e., before the polarity change); the noise is assumed to be 1 × 10 3 units. (Prism, BK7; laser, 632.8   nm .)

Fig. 5
Fig. 5

(a) and (b) Real-time response curves of I 1 and I 2 , respectively, upon varying the salt concentration. (c) Corresponding signal variation of χ 1 . (d) Response curves of χ 1 and | r p | 2 as a function of relative RI change. Insets are response curves of I 1 , I 2 , and χ 1 for the salt concentration range of 0%–0.5%.

Fig. 6
Fig. 6

Real-time response curves obtained from our cross-interference setup, with the dashed curve ( I 1 ) and solid curve ( χ 1 ) showing the association and dissociation reactions of BSA–antiBSA.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 π λ n p   sin   ϕ = k z = Re ( β s p ) = Re { 2 π λ ε d ε m ε d + ε m + Δ β } ,
E s p r = [ E P E S ]
E p = | r p | exp ( i θ p ) , E s = | r s | exp ( i θ s ) .
J P = [ cos ( α ) 2 sin ( α ) cos ( α ) sin ( α ) cos ( α ) cos ( a ) 2 ] .
I = E * E ,
E = J P E s p r .
I 1 = 1 2 [ r p 2 + 1 2 r p   cos ( Δ θ ) ] ,
I 2 = 1 2 [ r p 2 + 1 + 2 r p   cos ( Δ θ ) ] ,
χ 1 = I 1 I 2 = r s 2 + r p 2 2 r s r p   cos ( Δ θ ) r s 2 + r p 2 + 2 r s r p   cos ( Δ θ ) ,

Metrics