Abstract

Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET--A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998).
  2. L. Harrison, J. Michalsky, and J. Berndt, "Automated multifilter shadow-band radiometer: instrument for optical depth and radiation measurement," Appl. Opt. 33, 5118-5125 (1994).
  3. J. J. Michalsky, F. A. Schlemmer, W. E. Berkheiser, J. L. Berndt, L. C. Harrison, N. S. Laulainen, N. R. Larson, and J. C. Barnard, "Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links Programs," J. Geophys. Res. 106, 12099-12107 (2001).
  4. L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, and Q. L. Min, "The rotating shadowband spectroradiometer (RSS) at SGP," Geophys. Res. Lett. 26, 1715-1718 (1999).
  5. P. W. Kiedron, L. Harrison, J. J. Michalsky, J. Schlemmer, and J. L. Berndt, "Data and signal processing of rotating shadowband spectroradiometer (RSS) data," Proc. SPIE 4815, 51-57 (2002).
  6. P. W. Kiedron and J. J. Michalsky, "Measurement errors in diffuse irradiance with non-Lambertian radiometers," Int. J. Remote Sens. 24, 237-247 (2003).
  7. T. P. Ackerman and G. Stokes, "The Atmospheric Radiation Measurement Program," Phys. Today 56(1), 38-44 (2003).
  8. D. S. Bigelow, J. R. Slusser, A. F. Beaubien, and J. H. Gibson, "The USDA Ultraviolet Radiation Monitoring Program," Bull. Am. Meteorol. Soc. 79, 601-615 (1998).
  9. J. A. Augustine, G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, "An update on SURFRAD--the GCOS Surface Radiation Budget Network for the continental United States," J. Atmos. Oceanic Technol. 22, 1460-1472 (2005).
  10. A. Ohmura, H. Gilgen, H. Hegner, G. Muller, M. Wild, E. G. Dutton, B. Forgan, C. Frohlich, R. Philipona, A. Heimo, G. Konig-Langlo, B. McArthur, R. Pinker, C. H. Whitlock, and K. Dehne, "Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research," Bull. Am. Meteorol. Soc. 79, 2115-2136 (1998).
  11. R. M. Mitchell and B. W. Forgan, "Aerosol measurement in the Australian Outback: intercomparison of Sun photometers," J. Atmos. Oceanic Tech. 20, 54-66 (2003).
  12. Q. Min, E. Joseph, and M. Duan, "Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer," J. Geophys. Res. 109, D02201, doi: (2004).
    [CrossRef]
  13. Q. Min and M. Duan, "Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds," J. Geophys. Res. 110, D21201, doi: (2005).
    [CrossRef]
  14. F. Kasten and A. T. Young, "Revised optical air mass tables and approximation formula," Appl. Opt. 28, 4735-4738 (1989).
  15. L. Harrison, P. Kiedron, J. Berndt, and J. Schlemmer, "Extraterrestrial solar spectrum 360-1050 nm from rotating shadowband spectroradiometer measurements at the Southern Great Plains (ARM) site," J. Geophys. Res. 108, 4424, doi: (2003).
    [CrossRef]
  16. L. Harrison and J. Michalsky, "Objective algorithms for the retrieval of optical depths from ground-based measurements," Appl. Opt. 33, 5126-5132 (1994).
  17. J. J. Michalsky, L. C. Harrison, and W. E. Berkheiser, "Cosine response characteristics of some radiometric and photometric sensors," Sol. Energy 54, 397-402 (1995).
  18. M. Alexandrov, A. Marshak, B. Cairns, A. Lacis, and B. Carlson, "Automated cloud screening algorithm for MFRSR data," Geophys. Res. Lett. 31, L04118, doi: (2004).
    [CrossRef]
  19. M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, "Remote sensing of atmospheric aerosols and trace gases by means of Multi-Filter Rotating Shadow-band Radiometer. Part I: retrieval algorithm," J. Atmos. Sci. 59, 524-543 (2002).
  20. M. Alexandrov, B. Carlson, A. Lacis, and B. Cairns, "Separation of fine and coarse aerosol modes in MFRSR data sets," J. Geophys. Res. 110, D13204, doi: (2005).
    [CrossRef]
  21. M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, "Characterization of atmospheric aerosols using MFRSR measurements" (submitted to J. Geophys. Res.).

2005

J. A. Augustine, G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, "An update on SURFRAD--the GCOS Surface Radiation Budget Network for the continental United States," J. Atmos. Oceanic Technol. 22, 1460-1472 (2005).

Q. Min and M. Duan, "Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds," J. Geophys. Res. 110, D21201, doi: (2005).
[CrossRef]

M. Alexandrov, B. Carlson, A. Lacis, and B. Cairns, "Separation of fine and coarse aerosol modes in MFRSR data sets," J. Geophys. Res. 110, D13204, doi: (2005).
[CrossRef]

2004

M. Alexandrov, A. Marshak, B. Cairns, A. Lacis, and B. Carlson, "Automated cloud screening algorithm for MFRSR data," Geophys. Res. Lett. 31, L04118, doi: (2004).
[CrossRef]

Q. Min, E. Joseph, and M. Duan, "Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer," J. Geophys. Res. 109, D02201, doi: (2004).
[CrossRef]

2003

L. Harrison, P. Kiedron, J. Berndt, and J. Schlemmer, "Extraterrestrial solar spectrum 360-1050 nm from rotating shadowband spectroradiometer measurements at the Southern Great Plains (ARM) site," J. Geophys. Res. 108, 4424, doi: (2003).
[CrossRef]

R. M. Mitchell and B. W. Forgan, "Aerosol measurement in the Australian Outback: intercomparison of Sun photometers," J. Atmos. Oceanic Tech. 20, 54-66 (2003).

P. W. Kiedron and J. J. Michalsky, "Measurement errors in diffuse irradiance with non-Lambertian radiometers," Int. J. Remote Sens. 24, 237-247 (2003).

T. P. Ackerman and G. Stokes, "The Atmospheric Radiation Measurement Program," Phys. Today 56(1), 38-44 (2003).

2002

P. W. Kiedron, L. Harrison, J. J. Michalsky, J. Schlemmer, and J. L. Berndt, "Data and signal processing of rotating shadowband spectroradiometer (RSS) data," Proc. SPIE 4815, 51-57 (2002).

M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, "Remote sensing of atmospheric aerosols and trace gases by means of Multi-Filter Rotating Shadow-band Radiometer. Part I: retrieval algorithm," J. Atmos. Sci. 59, 524-543 (2002).

2001

J. J. Michalsky, F. A. Schlemmer, W. E. Berkheiser, J. L. Berndt, L. C. Harrison, N. S. Laulainen, N. R. Larson, and J. C. Barnard, "Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links Programs," J. Geophys. Res. 106, 12099-12107 (2001).

1999

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, and Q. L. Min, "The rotating shadowband spectroradiometer (RSS) at SGP," Geophys. Res. Lett. 26, 1715-1718 (1999).

1998

D. S. Bigelow, J. R. Slusser, A. F. Beaubien, and J. H. Gibson, "The USDA Ultraviolet Radiation Monitoring Program," Bull. Am. Meteorol. Soc. 79, 601-615 (1998).

A. Ohmura, H. Gilgen, H. Hegner, G. Muller, M. Wild, E. G. Dutton, B. Forgan, C. Frohlich, R. Philipona, A. Heimo, G. Konig-Langlo, B. McArthur, R. Pinker, C. H. Whitlock, and K. Dehne, "Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research," Bull. Am. Meteorol. Soc. 79, 2115-2136 (1998).

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET--A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998).

1995

J. J. Michalsky, L. C. Harrison, and W. E. Berkheiser, "Cosine response characteristics of some radiometric and photometric sensors," Sol. Energy 54, 397-402 (1995).

1994

1989

Appl. Opt.

Bull. Am. Meteorol. Soc.

A. Ohmura, H. Gilgen, H. Hegner, G. Muller, M. Wild, E. G. Dutton, B. Forgan, C. Frohlich, R. Philipona, A. Heimo, G. Konig-Langlo, B. McArthur, R. Pinker, C. H. Whitlock, and K. Dehne, "Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research," Bull. Am. Meteorol. Soc. 79, 2115-2136 (1998).

D. S. Bigelow, J. R. Slusser, A. F. Beaubien, and J. H. Gibson, "The USDA Ultraviolet Radiation Monitoring Program," Bull. Am. Meteorol. Soc. 79, 601-615 (1998).

Geophys. Res. Lett.

M. Alexandrov, A. Marshak, B. Cairns, A. Lacis, and B. Carlson, "Automated cloud screening algorithm for MFRSR data," Geophys. Res. Lett. 31, L04118, doi: (2004).
[CrossRef]

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, and Q. L. Min, "The rotating shadowband spectroradiometer (RSS) at SGP," Geophys. Res. Lett. 26, 1715-1718 (1999).

Int. J. Remote Sens.

P. W. Kiedron and J. J. Michalsky, "Measurement errors in diffuse irradiance with non-Lambertian radiometers," Int. J. Remote Sens. 24, 237-247 (2003).

J. Atmos. Oceanic Tech.

R. M. Mitchell and B. W. Forgan, "Aerosol measurement in the Australian Outback: intercomparison of Sun photometers," J. Atmos. Oceanic Tech. 20, 54-66 (2003).

J. Atmos. Oceanic Technol.

J. A. Augustine, G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, "An update on SURFRAD--the GCOS Surface Radiation Budget Network for the continental United States," J. Atmos. Oceanic Technol. 22, 1460-1472 (2005).

J. Atmos. Sci.

M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, "Remote sensing of atmospheric aerosols and trace gases by means of Multi-Filter Rotating Shadow-band Radiometer. Part I: retrieval algorithm," J. Atmos. Sci. 59, 524-543 (2002).

J. Geophys. Res.

M. Alexandrov, B. Carlson, A. Lacis, and B. Cairns, "Separation of fine and coarse aerosol modes in MFRSR data sets," J. Geophys. Res. 110, D13204, doi: (2005).
[CrossRef]

L. Harrison, P. Kiedron, J. Berndt, and J. Schlemmer, "Extraterrestrial solar spectrum 360-1050 nm from rotating shadowband spectroradiometer measurements at the Southern Great Plains (ARM) site," J. Geophys. Res. 108, 4424, doi: (2003).
[CrossRef]

Q. Min, E. Joseph, and M. Duan, "Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer," J. Geophys. Res. 109, D02201, doi: (2004).
[CrossRef]

Q. Min and M. Duan, "Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds," J. Geophys. Res. 110, D21201, doi: (2005).
[CrossRef]

J. J. Michalsky, F. A. Schlemmer, W. E. Berkheiser, J. L. Berndt, L. C. Harrison, N. S. Laulainen, N. R. Larson, and J. C. Barnard, "Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links Programs," J. Geophys. Res. 106, 12099-12107 (2001).

Phys. Today

T. P. Ackerman and G. Stokes, "The Atmospheric Radiation Measurement Program," Phys. Today 56(1), 38-44 (2003).

Proc. SPIE

P. W. Kiedron, L. Harrison, J. J. Michalsky, J. Schlemmer, and J. L. Berndt, "Data and signal processing of rotating shadowband spectroradiometer (RSS) data," Proc. SPIE 4815, 51-57 (2002).

Remote Sens. Environ.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET--A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998).

Sol. Energy

J. J. Michalsky, L. C. Harrison, and W. E. Berkheiser, "Cosine response characteristics of some radiometric and photometric sensors," Sol. Energy 54, 397-402 (1995).

Other

M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, "Characterization of atmospheric aerosols using MFRSR measurements" (submitted to J. Geophys. Res.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top: historic measurements of 415 and 870   nm angular responses in the south–north direction for the head MP924. Bottom: errors in 415 and 870   nm OD introduced by applying the 25 November 2002 response instead of the more recent ones. The errors are calculated for the solar geometry of SGP's Central Facility on 16 September 2000.

Fig. 2
Fig. 2

Artificial additions to measured OD due to 1° tilts of MFRSR in different directions.

Fig. 3
Fig. 3

Artificial addition to C1 and E13 MFRSR OD in 870   nm channel derived from comparison with colocated tracking CIMEL Sun photometer. The data is from 16 September 2000. All three instruments are located at SGP's Central Facility.

Fig. 4
Fig. 4

Error in 870   nm OD due to the second (cosine correction) tilt effect simulated according to Eq. (15) for C1 MFRSR using its actual angular response function and the tilt parameters from Fig. 3 (top).

Fig. 5
Fig. 5

Simulated artificial additional ODs caused by erroneous nighttime offset correction applied to direct normal irradiances. The calculations were made for solar geometry corresponding to 16 September 2000 at SGP's CF. The 870   nm AOD is 0.1 split in half between the fine and coarse modes, which have the respective r e f f of 0.15 and 1.5 μ m . Only the values corresponding to airmasses less than 5 are shown.

Fig. 6
Fig. 6

Detection of MFRSR misalignment problem. Top left: direct (black) and diffuse (gray) irradiances from E3 MFRSR for 13 November 2000. Top right: artificial oscillations in 870   nm AOD from some interval in the middle of that day. Bottom left: variance spectrum of 870   nm AOD as function of inverse frequency in the range containing artificial “spectral lines” caused by the misalignment. Bottom right: time series of misalignment indicator Eq. (30) values for E3 in 2000. The diamonds indicate the severity of the problem ( I 2 in arbitrary units) for the affected days.

Fig. 7
Fig. 7

Schematic of the mechanism of creating oscillations in OD by the instrument's misalignment. The top row of pictures shows the MFRSR diffuser and the shadow band partially blocking the Sun throughout the 100   s cycle of operation. The middle row shows the corresponding shading of the diffuser. All Sun and shadow-band angles, as well as the shading degrees, are not to scale. The bottom plot presents the corresponding artificial OD introduced by this process [similar to that in Fig. 6 (top right)].

Tables (1)

Tables Icon

Table 1 Statistics of Channels’ Effective Wavelengths and Optical Depths of Rayleigh, NO2, and Ozone (at Typical Atmospheric Conditions) Compiled from a Set of Spectral Response Functions for 44 Instrument Heads

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

S s = S s w + S s e 2 ,
S a u r = S t o t h S s ,
S d i f h = S b l k + S a u r = S b l k + S t o t h S s ,
S d i r h = S t o t h S d i f h = S s S b l k ,
S d i r = S d i r h cos   θ
I = I d i r = 1 C ˜ S d i r 1 + η ˜ ( θ , φ ) ,
I = I 0   exp ( τ μ ) ,
τ = ln ( I I 0 ) μ .
S d i r h = I 0 C [ 1 + η ( θ , φ ) ] cos   θ   exp ( τ μ ) + e 0 ,
τ ˜ = τ + τ c a l + τ cos + τ t i l t + τ n o i s e ,
τ c a l = c μ ,   where   c = ln ( C C ˜ )
τ cos = μ   ln [ 1 + η ( θ , φ ) 1 + η ˜ ( θ , φ ) ] μ [ η ˜ ( θ , φ ) η ( θ , φ ) ]
τ t i l t = τ t i l t ( n ) + τ t i l t ( c )
τ t i l t ( n ) = μ   ln ( cos   θ cos   θ ) ,
τ t i l t ( c ) = μ   ln [ 1 +  η ( θ , φ ) 1 +  η ( θ , φ ) ] μ [ η ( θ , φ ) η ( θ , φ ) ] ,
τ n o i s e = μ e 0 S d i r h e 0 S d i r ,
cos   θ = cos   θ   cos   θ t + sin   θ   sin   θ t   cos ( φ φ t )
cos   θ + sin   θ   cos ( φ φ t ) θ t .
τ t i l t ( n ) = ln [ cos   θ t + tan   θ   sin   θ t   cos ( φ φ t ) ] μ .
τ t i l t ( n ) sin   θ   cos ( φ φ t ) θ t .
τ t i l t sin   θ   cos   φ A   tan   φ + B ,
A = θ t  sin   φ t , B = θ t  cos   φ t
φ t = arctan ( A B ) , θ t = A 2 + B 2 .
I = I 0   exp ( τ μ ) + e O F ,
τ ˜ = τ τ O F ,
τ O F e O F I μ e O F I 0 μ   exp ( τ μ )
E ( f ) = 2 T | τ ^ ( f ) | 2 ,   f > 0 ,
var ( τ ) = 1 T 0 T | τ ( t ) τ ¯ | 2 d t = 0 E ( f ) d f ,
I i = E ( f ) [ f i , f i + 1 ] = 1 f i + 1 f i f i f i + 1 E ( f ) d f ,
h = 2 I 2 I 1 + I 3 ,

Metrics