Abstract

We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three-dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is approximately 1.8  dB at 1550  nm, and the mode conversion loss can be less than 0.5  dB. The discussion of the present state of the art is also involved. The proposed coupler can be used in chip-to-chip communication.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, "Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices," Proc. SPIE 4997, 157-170 (2003).
    [CrossRef]
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  3. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si waveguides to single mode fibers," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  4. Z. Lu and D. W. Prather, "Total internal reflection-evanescent coupler for fiber to waveguide integration of planar optoelectronic devices," Opt. Lett. 29, 1748-1750 (2004).
    [CrossRef] [PubMed]
  5. W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures," Proc. SPIE 5225, 101-112 (2003).
    [CrossRef]
  6. J. K. Butler, N.-H. Sun, G. A. Evans, L. Pang, and P. Congdon, "Grating-assisted coupling of light between semiconductor and glass waveguides," J. Lightwave Technol. 16, 1038-1048 (1998).
    [CrossRef]
  7. R. Orobtchouk, N. Schnell, T. Benyattou, J. Gregoire, S. Lardenois, M. Heitzmann, and J. M. Fedeli, "New ARROW optical coupler for optical interconnect," in Proceedings of the IEEE 2003 International Interconnect Technology Conference (IEEE, 2003), pp. 233-235.
    [CrossRef]
  8. G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides," IEEE Photon. Technol. Lett. 15, 1395-139 (2003).
    [CrossRef]
  9. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  10. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  11. Photon Design Product, FIMMWAVE and FIMMPROP software, http://www.photond.com.

2004

2003

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, "Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices," Proc. SPIE 4997, 157-170 (2003).
[CrossRef]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures," Proc. SPIE 5225, 101-112 (2003).
[CrossRef]

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides," IEEE Photon. Technol. Lett. 15, 1395-139 (2003).
[CrossRef]

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si waveguides to single mode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

1998

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si waveguides to single mode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides," IEEE Photon. Technol. Lett. 15, 1395-139 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Proc. SPIE

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures," Proc. SPIE 5225, 101-112 (2003).
[CrossRef]

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, "Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices," Proc. SPIE 4997, 157-170 (2003).
[CrossRef]

Other

Photon Design Product, FIMMWAVE and FIMMPROP software, http://www.photond.com.

R. Orobtchouk, N. Schnell, T. Benyattou, J. Gregoire, S. Lardenois, M. Heitzmann, and J. M. Fedeli, "New ARROW optical coupler for optical interconnect," in Proceedings of the IEEE 2003 International Interconnect Technology Conference (IEEE, 2003), pp. 233-235.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the slot waveguide coupler ( n s refers to the effective index of the region w s × h ).

Fig. 2
Fig. 2

Transverse electric field ( E x ) of the quasi-TE mode in the slot waveguide at λ 0 = 1.55 μ m , with n H = 3.45 , n c = 1.45 , n s = 1.0 , w s = 200   nm , and w H = 75   nm . (a) Three-dimensional profile of the electric field ( E x ) amplitude. (b) Electric field ( E x ) amplitude along the horizontal x axis at y = 0 .

Fig. 3
Fig. 3

Simulated effective indices of the quasi-TE mode in the slot waveguide as a function of w s for w H = 75 , w H = 100 , w H = 150 , and w H = 200   nm .

Fig. 4
Fig. 4

Simulated mode mismatch loss of quasi-TE mode dependence on slot width for w H = 75 , w H = 100 , w H = 150 , and w H = 200   nm .

Fig. 5
Fig. 5

Simulated mode conversion losses of quasi-TE mode and quasi-TM mode dependence on coupler length for w H = 75 , w s = 200   nm .

Tables (1)

Tables Icon

Table 1 Comparison of Mode Mismatch Loss and Effective Index with Varying Refractive Index for w s = 200 nm and w H = 75 nm

Equations (71)

Equations on this page are rendered with MathJax. Learn more.

1.8   dB
1550   nm
0.5   dB
1 μ m
9 μ m
300   nm
3 μ m
SiO 2
( n c )
300 × 300   nm
n H = 3.45
1550   nm
w s = 200
w H = 75   nm
SiO 2
w s = 200
w H = 75   nm
E x
n H 2 / n s 2
n eff = 1.45
w s
w H = 200   nm
w s
w H
w H
100   nm
8 9 μ m
300 × 300   nm
300 × 300   nm
10.17   dB
12.6   dB
1.8   dB
w H = 75
w s = 200   nm
w H
w H = 75
w s = 200   nm
11.35   dB
L = 100 μ m
0.5   dB
L 90 μ m
w s
50   nm
1.5   dB
L 90 μ m
1.8   dB
1550   nm
0.5   dB
n s
w s × h
( E x )
λ 0 = 1.55 μ m
n H = 3.45
n c = 1.45
n s = 1.0
w s = 200   nm
w H = 75   nm
( E x )
( E x )
y = 0
w s
w H = 75
w H = 100
w H = 150
w H = 200   nm
w H = 75
w H = 100
w H = 150
w H = 200   nm
w H = 75
w s = 200   nm

Metrics