Abstract

The bio-optical compact disk (BioCD) is an optical biosensor that performs common-path molecular interferometry of patterned proteins on a disk spinning at high speed. The common-path configuration makes it ultrastable and allows surface height precision below 10 pm. In this paper we show that two complementary interferometric quadrature conditions exist simultaneously that convert the modulus and phase of the reflection coefficient, modulated by protein patterns on the disk surface, into intensity modulation at the detector. In the far field they separate into spatially symmetric and antisymmetric intensity modulation in response to the local distribution of protein. The antisymmetric response is equivalent to differential phase-contrast detection, and the symmetric response is equivalent to in-line (IL) common-path interferometry. We measure the relative sensitivities of these orthogonal channels to printed protein patterns on disk structures that include thermal oxide on silicon and Bragg dielectric stacks. The scaling mass sensitivity of the IL channel on oxide on silicon was measured to be 0.17pg/mm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. MacBeath and S. L. Schreiber, "Printing proteins as microarrays for high-throughput function determination," Science 289, 1760-1763 (2000).
    [PubMed]
  2. M. Schena, D. Shalon, R. Davis, and P. Brown, "Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray," Science 270, 467-470 (1995).
    [CrossRef] [PubMed]
  3. M. O'Brien, V. Perez-Luna, S. Brueck, and G. Lopez, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
    [CrossRef] [PubMed]
  4. C. Rowe, L. Tender, M. Feldstein, J. Golden, S. Scruggs, B. MacCraith, J. Cras, and F. Ligler, "Array biosensor for simultaneous identification of bacterial, viral, and protein analytes," Anal. Chem. 71, 3846-3852 (1999).
    [CrossRef] [PubMed]
  5. B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors," Anal. Chem. 198, 268-277 (1991).
  6. U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostilin, and M. Malmqvist, "Real-time biospeicific interaction analysis using surface-plasmon resonance and a sensor chip technology," BioTechniques 11, 620-627 (1991).
    [PubMed]
  7. J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  8. M. Malmsten, "Ellipsometry studies of protein layers adsorbed at hydrophobic surfaces," J. Colloid Interface Sci. 166, 333-342 (1994).
    [CrossRef]
  9. M. Landgren and B. Jonsson, "Determination of the optical properties of Si/SiO2 surfaces by means of ellipsometry, using different ambient media," J. Phys. Chem. 97, 1656-1660 (1993).
    [CrossRef]
  10. S. Lousinian and S. Logothetidis, "Optical properties of proteins and protein adsorption study," Microelectron. Eng. 84, 479-485 (2007).
    [CrossRef]
  11. V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
    [CrossRef] [PubMed]
  12. K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, "A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface," J. Am. Chem. Soc. 121, 7925-7930 (1999).
    [CrossRef]
  13. L. Lading, J. A. Mann, and R. V. Edwards, "Analysis of a surface-scattering spectrometer," J. Opt. Soc. Am. A 6, 1692-1701 (1989).
    [CrossRef]
  14. Y. G. Tsay, C. I. Lin, J. Lee, E. K. Gustafson, R. Appelqvist, P. Magginetti, R. Norton, N. Teng, and D. Chariton, "Optical biosensor assay," Clin. Chem. 37, 1502-1505 (1991).
    [PubMed]
  15. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
    [CrossRef] [PubMed]
  16. M. Zhao, X. Wang, and D. Nolte, "The in-line-quadrature bioCD," Proc. SPIE 6447, 64470B (2007).
    [CrossRef]
  17. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs-Cr," Opt. Lett. 15, 1239-1241 (1990).
    [CrossRef] [PubMed]
  18. M. M. Varma and D. D. Nolte, "Spinning-disk self-referencing interferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004)
    [CrossRef] [PubMed]
  19. L. Peng, M. M. Varma, and D. D. Nolte, "The adaptive BioCD: interferometric immunoassay on a spinning disk," Proc. SPIE 5692, 224-232 (2005).
    [CrossRef]
  20. M. Zhao and L. Peng, "Phase-contrast BioCD: high-speed immunoassays at subpicogram detection levels," Proc. SPIE 6095, 93-104 (2006).
  21. T. Gao, J. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
    [CrossRef] [PubMed]
  22. H. Arwin and I. Lundstrom, "A reflectance method for quantification of immunological reactions on surfaces," Anal. Biochem 145, 106-112 (1985).
    [CrossRef] [PubMed]
  23. O. S. Heavens, Optical Properties of Thin Solid Films (Academic, 1955).
  24. J. Duchet, B. Chabert, J. P. Chapel, J. F. Gerard, J. M. Chovelon, and N. Jaffrezic-Renaul, "Influence of the deposition process on the structure of grafted alkylsilane layers," Langmuir 13, 2271-2278 (1997).
    [CrossRef]
  25. Z. H. Wang and G. Jin, "Silicon surface modification with a mixed silanes layer to proteins for biosensor with imaging ellipsometry," Colloids Surf. B 34, 173-177 (2004).
    [CrossRef]
  26. N. B. Sheller and S. Petrash, "Atomic force microscopy and x-ray reflectivity studies of albumin adsorbed onto self-assembled monolayers of hexadecyltrichlorosilane," Langmuir 14, 4535-4544 (1998).
    [CrossRef]
  27. B. D. Martin and B. P. Gaber, "Direct protein microarray fabrication using a hydrogel stamper," Langmuir 14, 3971-3975 (1998).
    [CrossRef]
  28. L. L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
    [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  30. D. D. Nolte and M. Zhao, "Scaling mass sensitivity of the BioCD at 0.25 pg/mm," Proc. SPIE 6380, 63800J (2006).
    [CrossRef]
  31. M. Zhao, D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, "High-speed interferometric detection of label-free immunoassays on the biological compact disc," Clin. Chem. 52, 2135-2140 (2006).
    [CrossRef] [PubMed]
  32. J. M. Albella, J. M. Martinez-Duart, and F. Rueda, "Index of refraction of tantalum oxide in the wavelength interval 2750-14000 Å," Opt. Acta 22, 973-979 (1975).
    [CrossRef]
  33. H. Arwin, "Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin," Appl. Spectrosc. 40, 313-318 (1986).
    [CrossRef]
  34. D. E. Aspnes, Properties of Silicon (INSPEC, 1988).

2007 (3)

S. Lousinian and S. Logothetidis, "Optical properties of proteins and protein adsorption study," Microelectron. Eng. 84, 479-485 (2007).
[CrossRef]

M. Zhao, X. Wang, and D. Nolte, "The in-line-quadrature bioCD," Proc. SPIE 6447, 64470B (2007).
[CrossRef]

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
[CrossRef] [PubMed]

2006 (4)

D. D. Nolte and M. Zhao, "Scaling mass sensitivity of the BioCD at 0.25 pg/mm," Proc. SPIE 6380, 63800J (2006).
[CrossRef]

M. Zhao, D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, "High-speed interferometric detection of label-free immunoassays on the biological compact disc," Clin. Chem. 52, 2135-2140 (2006).
[CrossRef] [PubMed]

M. Zhao and L. Peng, "Phase-contrast BioCD: high-speed immunoassays at subpicogram detection levels," Proc. SPIE 6095, 93-104 (2006).

T. Gao, J. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

2005 (2)

L. Peng, M. M. Varma, and D. D. Nolte, "The adaptive BioCD: interferometric immunoassay on a spinning disk," Proc. SPIE 5692, 224-232 (2005).
[CrossRef]

L. L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

2004 (2)

M. M. Varma and D. D. Nolte, "Spinning-disk self-referencing interferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004)
[CrossRef] [PubMed]

Z. H. Wang and G. Jin, "Silicon surface modification with a mixed silanes layer to proteins for biosensor with imaging ellipsometry," Colloids Surf. B 34, 173-177 (2004).
[CrossRef]

2001 (1)

M. O'Brien, V. Perez-Luna, S. Brueck, and G. Lopez, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

2000 (1)

G. MacBeath and S. L. Schreiber, "Printing proteins as microarrays for high-throughput function determination," Science 289, 1760-1763 (2000).
[PubMed]

1999 (3)

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

C. Rowe, L. Tender, M. Feldstein, J. Golden, S. Scruggs, B. MacCraith, J. Cras, and F. Ligler, "Array biosensor for simultaneous identification of bacterial, viral, and protein analytes," Anal. Chem. 71, 3846-3852 (1999).
[CrossRef] [PubMed]

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, "A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface," J. Am. Chem. Soc. 121, 7925-7930 (1999).
[CrossRef]

1998 (2)

N. B. Sheller and S. Petrash, "Atomic force microscopy and x-ray reflectivity studies of albumin adsorbed onto self-assembled monolayers of hexadecyltrichlorosilane," Langmuir 14, 4535-4544 (1998).
[CrossRef]

B. D. Martin and B. P. Gaber, "Direct protein microarray fabrication using a hydrogel stamper," Langmuir 14, 3971-3975 (1998).
[CrossRef]

1997 (2)

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

J. Duchet, B. Chabert, J. P. Chapel, J. F. Gerard, J. M. Chovelon, and N. Jaffrezic-Renaul, "Influence of the deposition process on the structure of grafted alkylsilane layers," Langmuir 13, 2271-2278 (1997).
[CrossRef]

1995 (1)

M. Schena, D. Shalon, R. Davis, and P. Brown, "Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

1994 (1)

M. Malmsten, "Ellipsometry studies of protein layers adsorbed at hydrophobic surfaces," J. Colloid Interface Sci. 166, 333-342 (1994).
[CrossRef]

1993 (1)

M. Landgren and B. Jonsson, "Determination of the optical properties of Si/SiO2 surfaces by means of ellipsometry, using different ambient media," J. Phys. Chem. 97, 1656-1660 (1993).
[CrossRef]

1991 (3)

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors," Anal. Chem. 198, 268-277 (1991).

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostilin, and M. Malmqvist, "Real-time biospeicific interaction analysis using surface-plasmon resonance and a sensor chip technology," BioTechniques 11, 620-627 (1991).
[PubMed]

Y. G. Tsay, C. I. Lin, J. Lee, E. K. Gustafson, R. Appelqvist, P. Magginetti, R. Norton, N. Teng, and D. Chariton, "Optical biosensor assay," Clin. Chem. 37, 1502-1505 (1991).
[PubMed]

1990 (1)

1989 (1)

1986 (1)

1985 (1)

H. Arwin and I. Lundstrom, "A reflectance method for quantification of immunological reactions on surfaces," Anal. Biochem 145, 106-112 (1985).
[CrossRef] [PubMed]

1975 (1)

J. M. Albella, J. M. Martinez-Duart, and F. Rueda, "Index of refraction of tantalum oxide in the wavelength interval 2750-14000 Å," Opt. Acta 22, 973-979 (1975).
[CrossRef]

Anal. Biochem (1)

H. Arwin and I. Lundstrom, "A reflectance method for quantification of immunological reactions on surfaces," Anal. Biochem 145, 106-112 (1985).
[CrossRef] [PubMed]

Anal. Chem. (3)

T. Gao, J. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

C. Rowe, L. Tender, M. Feldstein, J. Golden, S. Scruggs, B. MacCraith, J. Cras, and F. Ligler, "Array biosensor for simultaneous identification of bacterial, viral, and protein analytes," Anal. Chem. 71, 3846-3852 (1999).
[CrossRef] [PubMed]

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors," Anal. Chem. 198, 268-277 (1991).

Appl. Phys. Lett. (1)

L. L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

M. O'Brien, V. Perez-Luna, S. Brueck, and G. Lopez, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

BioTechniques (1)

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostilin, and M. Malmqvist, "Real-time biospeicific interaction analysis using surface-plasmon resonance and a sensor chip technology," BioTechniques 11, 620-627 (1991).
[PubMed]

Clin. Chem. (2)

Y. G. Tsay, C. I. Lin, J. Lee, E. K. Gustafson, R. Appelqvist, P. Magginetti, R. Norton, N. Teng, and D. Chariton, "Optical biosensor assay," Clin. Chem. 37, 1502-1505 (1991).
[PubMed]

M. Zhao, D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, "High-speed interferometric detection of label-free immunoassays on the biological compact disc," Clin. Chem. 52, 2135-2140 (2006).
[CrossRef] [PubMed]

Colloids Surf. B (1)

Z. H. Wang and G. Jin, "Silicon surface modification with a mixed silanes layer to proteins for biosensor with imaging ellipsometry," Colloids Surf. B 34, 173-177 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, "A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface," J. Am. Chem. Soc. 121, 7925-7930 (1999).
[CrossRef]

J. Colloid Interface Sci. (1)

M. Malmsten, "Ellipsometry studies of protein layers adsorbed at hydrophobic surfaces," J. Colloid Interface Sci. 166, 333-342 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

M. Landgren and B. Jonsson, "Determination of the optical properties of Si/SiO2 surfaces by means of ellipsometry, using different ambient media," J. Phys. Chem. 97, 1656-1660 (1993).
[CrossRef]

Langmuir (3)

N. B. Sheller and S. Petrash, "Atomic force microscopy and x-ray reflectivity studies of albumin adsorbed onto self-assembled monolayers of hexadecyltrichlorosilane," Langmuir 14, 4535-4544 (1998).
[CrossRef]

B. D. Martin and B. P. Gaber, "Direct protein microarray fabrication using a hydrogel stamper," Langmuir 14, 3971-3975 (1998).
[CrossRef]

J. Duchet, B. Chabert, J. P. Chapel, J. F. Gerard, J. M. Chovelon, and N. Jaffrezic-Renaul, "Influence of the deposition process on the structure of grafted alkylsilane layers," Langmuir 13, 2271-2278 (1997).
[CrossRef]

Microelectron. Eng. (1)

S. Lousinian and S. Logothetidis, "Optical properties of proteins and protein adsorption study," Microelectron. Eng. 84, 479-485 (2007).
[CrossRef]

Opt. Acta (1)

J. M. Albella, J. M. Martinez-Duart, and F. Rueda, "Index of refraction of tantalum oxide in the wavelength interval 2750-14000 Å," Opt. Acta 22, 973-979 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (4)

M. Zhao, X. Wang, and D. Nolte, "The in-line-quadrature bioCD," Proc. SPIE 6447, 64470B (2007).
[CrossRef]

D. D. Nolte and M. Zhao, "Scaling mass sensitivity of the BioCD at 0.25 pg/mm," Proc. SPIE 6380, 63800J (2006).
[CrossRef]

L. Peng, M. M. Varma, and D. D. Nolte, "The adaptive BioCD: interferometric immunoassay on a spinning disk," Proc. SPIE 5692, 224-232 (2005).
[CrossRef]

M. Zhao and L. Peng, "Phase-contrast BioCD: high-speed immunoassays at subpicogram detection levels," Proc. SPIE 6095, 93-104 (2006).

Science (3)

G. MacBeath and S. L. Schreiber, "Printing proteins as microarrays for high-throughput function determination," Science 289, 1760-1763 (2000).
[PubMed]

M. Schena, D. Shalon, R. Davis, and P. Brown, "Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (3)

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, 1955).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

D. E. Aspnes, Properties of Silicon (INSPEC, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Calculated reflectance curves for a disk with a 20-layer Bragg stack for 30° incidence under s- and p-polarized light. (b) The reflectance and reflection phase changes when a 1   nm protein layer is applied on the Bragg stack disk for 30° incident s-polarization. The 633 and 488   nm probe wavelengths used in the experiments are indicated.

Fig. 2
Fig. 2

(a) Calculated IL response and (b) DPC response to 1 nm protein layer as a function of the modulus and the phase of r. In the calculation, it is assumed that the incident angle is 30° (s-polarized) at a wavelength of 488   nm .

Fig. 3
Fig. 3

Experimental layout using a He–Ne and an argon laser as light sources. The laser beam is incident at 30° and focused on the BioCD on a motor, which is fixed on a linear stage. The motor and stage create polar scanning coordinates. The diffracted signal is acquired by a split detector. By acquiring the sum and difference of the detector halves, we obtain the IL channel and DPC channel, respectively.

Fig. 4
Fig. 4

Bragg stack BioCD illuminated at 488 and 633   nm wavelengths. At the 488   nm wavelength the IL and DPC signals share comparable amplitudes. At 633   nm the IL signal vanishes, and the DPC signal is maximum. The power spectra (c1)–(c4) are obtained from images (a1)–(a4).

Fig. 5
Fig. 5

80 nm oxide on silicon illuminated at 488 and 633   nm wavelengths. These data show the area scans for IL and DPC channels (a1)–(a4) and the associated power spectra (c1)–(c4). Time traces for selected tracks are shown in (b1) and (b2).

Fig. 6
Fig. 6

100   nm oxide-on-silicon disk illuminated at 488 and 633   nm wavelengths.

Fig. 7
Fig. 7

120   nm oxide-on-silicon disk illuminated at 488 and 633   nm wavelengths.

Fig. 8
Fig. 8

IL and phase-contrast channel sensitivities for oxidized silicon wafers with different silica thicknesses. The curves are the theoretical simulations compared with experimental results.

Tables (3)

Tables Icon

Table 1 Refractive Index for the Relevant Dielectric Materials [32, 33, 34]

Tables Icon

Table 2 Comparison between Theoretical and Experimental Results for the Ratio of Two-Channel Sensitivities

Tables Icon

Table 3 Experimental SBR and SNR Values (dB)

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

[ A B C D ] = [ e i δ 0 r p e i δ 0 r p e i δ 0 e i δ 0 ] [ e i δ p r p e i δ p r p e i δ p e i δ p ] [ A B C D ] ,
r p = sin ( θ p θ 0 ) sin ( θ p + θ 0 ) .
δ 0 , p = 2 π n 0 , p   cos   θ 0, p λ d .
r = ( e i δ p e i δ p ) r p + r ( e i δ p r p 2 e i δ p ) ( e i δ p r p 2 e i δ p ) + r ( e i δ p e i δ p ) r p e [ 2 i ( tan   θ p ) / ( tan   θ 0 ) δ p ] .
r = r + i P ( r ) δ p ,
P ( r ) = 2 ( r p r ) ( 1 r r p ) ( 1 r p 2 ) + 2 r ( tan   θ p tan   θ 0 ) .
g ( ρ ) = g ( x , y ) = 1 σ π e ( ρ 2 / 2 σ 2 ) ,
G ( k x , k y ) = σ π e 2 σ 2 k 2 .
I ( ρ ) = 1 π σ 2 e ρ 2 / σ 2 ,
E ( x , y ) = r ( x , y ) g ( x , y ) = [ r + i P ( r ) δ p ] g ( x , y ) = [ r + i P ( r ) 2 π n p h ( x v t , y ) cos   θ 0 λ ] g ( x , y ) = r [ 1 + i ϕ ( r ) h ( x v t , y ) ] g ( x , y ) ,
ϕ ( r ) = P ( r ) r 2 π n p   cos   θ p λ = [ ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) + tan   θ p tan   θ 0 ] 4 π n p   cos   θ p λ .
E ( k x , k y ) = r { G ( k x , k y ) + i ϕ ( r ) FT [ g ( x , y ) h ( x + η , y ) ] } ,
ϕ ( r ) = { 0 nodal 4 π ( 1 n p 2 ) λ antinodal ,
I ( k x , k y ; η ) = r { G ( k x , k y ) + i ϕ ( r ) FT [ g ( x , y ) × h ( x + η , y ) ] } 2 r 2 { G ( k x , k y ) 2 2 G ( k x , k y ) Im [ FT ( ϕ ( r ) g ( x , y ) × h ( x + η , y ) ) ] } .
i d ( η ) = R ( k x , k y ) I ( k x , k y , η ) d 2 k = 2 r 2 R ( k x ) G ( k x ) Im [ ϕ FT ( g ( x ) × h ( x + η ) ) ] d k x ,
R ( k x ) = { 1 for   IL   channel sgn ( x ) for   DPC   channel .
i d ( η ) = 2 r 2 Im { ϕ R ( k x ) G ( k x ) FT × [ g ( x ) h ( x + η ) ] d k x } .
s ( x ) = { 2 π δ ( x ) for   IL   channel i 2 π 1 x for   DPC   channel .
i ( η ) = 2 r 2 2 π   Im { ϕ FT [ s ( x ) g ( x ) ( g ( x ) × h ( x + η ) ) ] d k x } , = 2 r 2 2 π   Im { ϕ [ s ( x ) g ( x ) ( g ( x ) h ( x + η ) ) ] x = 0 } ,
i d I L ( η ) = 2 r 2 Im { ϕ [ g ( x ) ( g ( x ) h ( x + η ) ) ] x = 0 } ,
i d D P C ( η ) = 2 r 2 Im { i ϕ [ d ( x ) ( g ( x ) h ( x + η ) ) ] x = 0 } ,
i d I L ( η ) = 2 r 2 Im { ϕ [ g ( x ) ( g ( x ) h ( x + η ) ) ] x = 0 } , = 2 r 2 Im { ϕ + g ( 0 τ ) g ( τ ) h ( τ + η ) d τ } , = 2 r 2 ϕ Im g 2 ( η ) h ( η ) .
i DPC ( η ) = 2 ϕ Re r 2 [ ( d g ) h ] .
i IL ( x ) = 2 ϕ Im r 2 [ g 2 ( x ) h ( x ) ] ,
i DPC ( x ) = 2 ϕ Re r 2 [ ( d ( x ) g ( x ) ) h ( x ) ] ,
ϕ Re = 4 π n p   cos   θ 0 λ   Re ( ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) + tan   θ p tan   θ 0 ) ,
ϕ Im = 4 π n p   cos   θ 0 λ   Im ( ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) ) .
d ( x ) g ( x ) = g ( x ) H ( g ( x ) ) = g 2 ( x ) n = 0 ( x / w 0 ) 2 n + 1 ( 2 n + 1 ) n ! = g 2 ( x ) C ( x ) ,
= 0.5 σ ( g 2 ) ( 1 ) 0.04166 σ 3 ( g 2 ) ( 3 ) 0.003125 σ 5 ( g 2 ) ( 5 ) .
i DPC ( x ) = 2 ϕ Re r 2 [ ( d ( x ) g ( x ) ) h ( x ) ] ,
= 2 ϕ Re r 2 { [ 0.5 σ ( g 2 ) ( 1 ) 0.04166 σ 3 ( g 2 ) ( 3 ) ] h ( x ) } ,
= 2 ϕ Re r 2 [ 0.5 σ g 2 d h d x + 0.04166 σ 3 g 2 d 3 h d x 3 ] .
i IL ( x ) = 2 ϕ Im r 2 ( g 2 h ) ,
i DPC ( x ) = 2 ϕ Re r 2 [ 0.5 σ g 2 d h d x + 0.04167 σ 3 g 2 d 3 h d x 3 ] .

Metrics