Abstract

A fiber-optic sensor used to detect volatile organic compounds is described. The sensor consists of a single-mode D-fiber with a 2.5  μm polydimethylsiloxane layer. The layer is applied to the fiber flat after removal of a section of the fiber's cladding to increase evanescent interaction of the light with the layer. Absorption of volatile organic compounds into the polymer alters the refractive index of the layer, resulting in a birefringent change of the fiber. This change is observed as a shift in polarization of the light carried by the fiber. The sensor has a short length of 3 cm and a response time of around 1 s. The sensor is naturally reversible and gives an exponential response for gas and liquid concentrations of dichloromethane and acetone, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. C. Frye and S. J. Martin, "On-line monitoring of volatile organic species," Pollution Tech. Rev. 212, 215-224 (1993).
  2. D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, "Optical system-on-a-chip for chemical and biochemical sensing: the chemistry," Proc. SPIE 3540, 153-161 (1998).
    [Crossref]
  3. J. P. Conzen, J. Bürk, and H. J. Ache, "Characterization of a fiber-optic evanescent wave absorbance sensor for nonpolar organic compounds," Appl. Spectrosc. 47, 753-763 (1993).
    [Crossref]
  4. M. V. Chandak, Y. S. Lin, W. Ji, and R. J. Higgins, "Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes," J. Appl. Polym. Sci. 67, 165-175 (1998).
    [Crossref]
  5. S. V. Dixon-Garrett, K. Nagai, and B. D. Freeman, "Ethylbenzene solubility, diffusivity, and permeability in poly(dimethylsiloxane)," J. Polym. Sci. 39, 1461-1472 (2000).
  6. K. Spaeth, G. Kraus, and G. Gauglitz, "In situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry," Fresenius J. Anal. Chem. 357, 292-296 (1997).
    [Crossref]
  7. R. A. Potyrailo and G. M. Hieftje, "Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors," Fresenius J. Anal. Chem. 364, 32-40 (1999).
    [Crossref]
  8. G. L. Klunder, J. Bürk, H. J. Ache, R. J. Silva, and R. E. Russo, "Temperature effects on a fiber-optic evanescent wave absorption sensor," Appl. Spectrosc. 48, 387-393 (1994).
    [Crossref]
  9. G. L. Klunder and R. E. Russo, "Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds," Appl. Spectrosc. 49, 379-385 (1995).
    [Crossref]
  10. M. D. Degrandpre and L. W. Burgess, "A fiber-optic FT-NIR evanescent field absorbance sensor," Appl. Spectrosc. 44, 273-279 (1990).
    [Crossref]
  11. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, "Controlled core removal from a D-shaped optical fiber," Appl. Opt. 42, 7121-7125 (2003).
    [Crossref]
  12. J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices," Anal. Chem. 75, 6544-6554 (2003).
    [Crossref] [PubMed]
  13. D. S. Venables and C. A. Schmuttenmaer, "Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol," J. Chem. Phys. 113, 11222-11236 (2000).
    [Crossref]

2003 (2)

2000 (2)

D. S. Venables and C. A. Schmuttenmaer, "Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol," J. Chem. Phys. 113, 11222-11236 (2000).
[Crossref]

S. V. Dixon-Garrett, K. Nagai, and B. D. Freeman, "Ethylbenzene solubility, diffusivity, and permeability in poly(dimethylsiloxane)," J. Polym. Sci. 39, 1461-1472 (2000).

1999 (1)

R. A. Potyrailo and G. M. Hieftje, "Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors," Fresenius J. Anal. Chem. 364, 32-40 (1999).
[Crossref]

1998 (2)

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, "Optical system-on-a-chip for chemical and biochemical sensing: the chemistry," Proc. SPIE 3540, 153-161 (1998).
[Crossref]

M. V. Chandak, Y. S. Lin, W. Ji, and R. J. Higgins, "Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes," J. Appl. Polym. Sci. 67, 165-175 (1998).
[Crossref]

1997 (1)

K. Spaeth, G. Kraus, and G. Gauglitz, "In situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry," Fresenius J. Anal. Chem. 357, 292-296 (1997).
[Crossref]

1995 (1)

1994 (1)

1993 (2)

1990 (1)

Anal. Chem. (1)

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices," Anal. Chem. 75, 6544-6554 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Fresenius J. Anal. Chem. (2)

K. Spaeth, G. Kraus, and G. Gauglitz, "In situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry," Fresenius J. Anal. Chem. 357, 292-296 (1997).
[Crossref]

R. A. Potyrailo and G. M. Hieftje, "Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors," Fresenius J. Anal. Chem. 364, 32-40 (1999).
[Crossref]

J. Appl. Polym. Sci. (1)

M. V. Chandak, Y. S. Lin, W. Ji, and R. J. Higgins, "Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes," J. Appl. Polym. Sci. 67, 165-175 (1998).
[Crossref]

J. Chem. Phys. (1)

D. S. Venables and C. A. Schmuttenmaer, "Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol," J. Chem. Phys. 113, 11222-11236 (2000).
[Crossref]

J. Polym. Sci. (1)

S. V. Dixon-Garrett, K. Nagai, and B. D. Freeman, "Ethylbenzene solubility, diffusivity, and permeability in poly(dimethylsiloxane)," J. Polym. Sci. 39, 1461-1472 (2000).

Pollution Tech. Rev. (1)

G. C. Frye and S. J. Martin, "On-line monitoring of volatile organic species," Pollution Tech. Rev. 212, 215-224 (1993).

Proc. SPIE (1)

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, "Optical system-on-a-chip for chemical and biochemical sensing: the chemistry," Proc. SPIE 3540, 153-161 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Cross-sectional view of a D-fiber.

Fig. 2
Fig. 2

SEM image of the D-fiber cross section after a hydrofluoric acid etch. The etch removed the cladding above the core and a small amount of the germania-doped core.

Fig. 3
Fig. 3

(Color online) SEM image and accompanying diagram of the etched D-fiber with a PDMS layer applied. The 2.5   μm layer acts as a replacement cladding and fills in the partially removed core. In the image, several PDMS artifacts clutter the surface, which result from cleaving the sample.

Fig. 4
Fig. 4

(Color online) Setup used for VOC gas sensor response tests.

Fig. 5
Fig. 5

Relative polarization phase shift versus dichloromethane gas concentration. Concentration is displayed in parts per 10 6 to air.

Fig. 6
Fig. 6

Relative polarization phase shift of the output signal versus liquid acetone. Acetone concentration is displayed as percent liquid volume in water.

Fig. 7
Fig. 7

(Color online) Time response to quick sensor submersion in liquid acetone and dichloromethane. For comparison, the polarization phase shift to each chemical is separately normalized to peak response.

Metrics