Abstract

We numerically investigated the impacts of the imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber (MF). The statistical results show that the imperfect geometry structure degrades the high nonlinearity and fluctuates the chromatic dispersion in a MF. Moreover, the smaller air holes and the larger pitch are more likely to maintain the properties of nonlinearity and chromatic dispersion. Finally, the nonlinearity and chromatic dispersion are more insensitive to air-hole nonuniformity than to air-hole disorder. All of these will provide references for designing and fabricating MF.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [Crossref] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [Crossref] [PubMed]
  3. J. Liu, G. Y. Kai, L. Xue, Z. Wang, Y. Liu, Y. Li, C. Zhang, T. Sun, and X. Dong, "Modal cutoff properties in germanium-doped photonic crystal fiber," Appl. Opt. 45, 2035-2038 (2006).
    [Crossref] [PubMed]
  4. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra flattened dispersion," Opt. Express 11, 843-852 (2003).
    [Crossref] [PubMed]
  5. J. Liu, L. Xue, Z. Wang, G. Kai, Y. Liu, W. Zhang, and X. Dong, "Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes," IEEE J. Quantum Electron. 42, 961-968 (2006).
    [Crossref]
  6. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  7. J. Liu, L. Xue, Y. Li, Y. Jin, G. Kai, Y. Li, L. Jin, Z. Wang, S. Yuan, and X. Dong, "Enhanced nonlinearity in a simultaneously tapered and Yb3+-doped photonic crystal fiber," J. Opt. Soc. Am. B 23, 2448-2453 (2006).
    [Crossref]
  8. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004).
    [Crossref] [PubMed]
  9. J. T. Lizier and G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).
    [Crossref]
  10. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, "Analysis of geometric variations in high index-contrast waveguides: coupled mode theory formulation in perturbation matched curvilinear coordinates," Opt. Express 10, 1227-1243 (2002).
    [PubMed]
  11. I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, "Birefringence induced by imperfect geometry structure in photonic crystal fiber," Opt. Express 11, 2799-2806 (2003).
    [Crossref] [PubMed]
  12. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25, 206-208 (2000).
    [Crossref]
  13. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method," J. Lightwave Technol. 20, 1422-1433 (2002).
    [Crossref]
  14. T.-L. Wu and C.-H. Chao, "Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole," Photon. Technol. Lett. 16, 126-128 (2004).
    [Crossref]
  15. K. L. Reichenbach and C. Xu, "The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers," Opt. Express 13, 2799-2807 (2005).
    [Crossref] [PubMed]
  16. J. M. Fini, "Perturbative numerical modeling of microstructure fibers," Opt. Expresss 12, 4535-4545 (2004).
    [Crossref]
  17. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, "Small-core photonic crystal fibers with weakly disordered air-hole claddings," J. Opt. A 6, 221-223 (2004).
    [Crossref]
  18. S. Selleri and M. Zoboli, "Performance comparison of finite-element approaches for electromagnetic waveguides," J. Opt. Soc. Am. A 14, 1460-1466 (1997).
    [Crossref]

2006 (3)

2005 (1)

2004 (4)

J. M. Fini, "Perturbative numerical modeling of microstructure fibers," Opt. Expresss 12, 4535-4545 (2004).
[Crossref]

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, "Small-core photonic crystal fibers with weakly disordered air-hole claddings," J. Opt. A 6, 221-223 (2004).
[Crossref]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004).
[Crossref] [PubMed]

T.-L. Wu and C.-H. Chao, "Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole," Photon. Technol. Lett. 16, 126-128 (2004).
[Crossref]

2003 (3)

2002 (3)

2001 (1)

J. T. Lizier and G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).
[Crossref]

2000 (1)

1997 (2)

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. Liu, L. Xue, Z. Wang, G. Kai, Y. Liu, W. Zhang, and X. Dong, "Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes," IEEE J. Quantum Electron. 42, 961-968 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. T. Lizier and G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).
[Crossref]

J. Lightwave Technol. (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method," J. Lightwave Technol. 20, 1422-1433 (2002).
[Crossref]

J. Opt. A (1)

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, "Small-core photonic crystal fibers with weakly disordered air-hole claddings," J. Opt. A 6, 221-223 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Expresss (1)

J. M. Fini, "Perturbative numerical modeling of microstructure fibers," Opt. Expresss 12, 4535-4545 (2004).
[Crossref]

Opt. Lett. (2)

Photon. Technol. Lett. (1)

T.-L. Wu and C.-H. Chao, "Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole," Photon. Technol. Lett. 16, 126-128 (2004).
[Crossref]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Numerical model: (1), (2), and (3) are the cross sections of the perfect, nonuniform, and disordered MFs, respectively.

Fig. 2
Fig. 2

Contour map of the fundamental modal field: (1), (2), and (3) represent the map of perfect, disordered, and nonuniform MF, respectively.

Fig. 3
Fig. 3

Nonlinear coefficient probability distribution of the nonuniform and disordered MFs.

Fig. 4
Fig. 4

Normalized rmsγs varying versus r 1 and r 2 , respectively.

Fig. 5
Fig. 5

Nonlinear coefficient probability distribution of the disordered MF with different Λ / λ for r 2 = 0.3 and d / Λ = 0.6 .

Fig. 6
Fig. 6

Normalized rms γ of the imperfect geometry structure MF varying versus Λ / λ .

Fig. 7
Fig. 7

Normalized rms γ of the imperfect geometry structure MF varying versus d / Λ .

Fig. 8
Fig. 8

Chromatic dispersion of the nonuniform MF with r 1 = 0.3 , Λ = 4   μm , λ = 1550   nm , and d / Λ = 0.6 . The ideal value is 45.7 ps / km / nm ; n is the number of the random chromatic dispersion.

Fig. 9
Fig. 9

rms D s varying versus the degree of the MF imperfect geometry with Λ = 4   μm , d / Λ = 0.6 , and λ = 1550   nm . The circles and the stars represent the rms D s varying with r 1 and r 2 increasing, respectively.

Fig. 10
Fig. 10

rms D of the imperfect geometry structure MF varies with Λ increasing.

Fig. 11
Fig. 11

rms D of the imperfect geometry structure MF varies with d / Λ increasing.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

a x ( i ) = [ 1 + r 1 × n a ( i ) ] r , i = 1 , 2 , 3 , … ,  84 ,
b y ( i ) = [ 1 + r 1 × n b ( i ) ] r , i = 1 , 2 , 3 , … ,  84 ,
x ( i ) = x ideal ( i ) + r 2 × Λ × n x ( i ) , i = 1 , 2 , 3 , … ,  84 ,
y ( i ) = y ideal ( i ) + r 2 × Λ × n y ( i ) , i = 1 , 2 , 3 , … ,  84 ,
Mean γ = i = 1 N ( γ i N ) ,
rms γ = i = 1 N ( γ i γ ¯ ) 2 N ( N 1 ) ,
γ = 2 π n 2 λ A e f f ,
A e f f = [ E ( x , y ) E * ( x , y ) d x d y ] 2 [ E ( x , y ) E * ( x , y ) ] 2 d x d y ,
γ = 2 π n 2 λ [ E ( x , y ) E * ( x , y ) ] 2 d x d y [ E ( x , y ) E * ( x , y ) d x d y ] 2 .
D = 2 π c λ 2 d 2 β d ω 2 ,

Metrics