## Abstract

We numerically investigated the impacts of the imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber (MF). The statistical results show that the imperfect geometry structure degrades the high nonlinearity and fluctuates the chromatic dispersion in a MF. Moreover, the smaller air holes and the larger pitch are more likely to maintain the properties of nonlinearity and chromatic dispersion. Finally, the nonlinearity and chromatic dispersion are more insensitive to air-hole nonuniformity than to air-hole disorder. All of these will provide references for designing and fabricating MF.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${a}_{x}\left(i\right)=\left[1+{r}_{1}\times {n}_{a}\left(i\right)\right]r\text{,}\phantom{\rule[-0.0ex]{1.0em}{0.0ex}}i=1,2,3\text{,\hspace{0.17em}\u2026\hspace{0.17em},\hspace{0.17em}}84\text{,}$$
(2)
$${b}_{y}\left(i\right)=\left[1+{r}_{1}\times {n}_{b}\left(i\right)\right]r\text{,}\phantom{\rule[-0.0ex]{1.0em}{0.0ex}}i=1,2,3\text{,\hspace{0.17em}\u2026\hspace{0.17em},\hspace{0.17em}}84\text{,}$$
(3)
$$x\left(i\right)={x}_{\text{ideal}}\left(i\right)+{r}_{2}\times \Lambda \times {n}_{x}\left(i\right)\text{,}\phantom{\rule[-0.0ex]{1.0em}{0.0ex}}i=1,2,3\text{,\hspace{0.17em}\u2026\hspace{0.17em},\hspace{0.17em}}84\text{,}$$
(4)
$$y\left(i\right)={y}_{\text{ideal}}\left(i\right)+{r}_{2}\times \Lambda \times {n}_{y}\left(i\right)\text{,}\phantom{\rule[-0.0ex]{1.0em}{0.0ex}}i=1,2,3\text{,\hspace{0.17em}\u2026\hspace{0.17em},\hspace{0.17em}}84\text{,}$$
(5)
$${\text{Mean}}_{\gamma}={\displaystyle \sum _{i=1}^{N}\left(\frac{{\gamma}_{i}}{N}\right)}\text{,}$$
(6)
$${\text{rms}}_{\gamma}={\displaystyle \sum _{i=1}^{N}\sqrt{\frac{{\left({\gamma}_{i}-\overline{\gamma}\right)}^{2}}{N\left(N-1\right)}}}\text{,}$$
(7)
$$\gamma =\frac{2\pi {n}_{2}}{\lambda {A}_{eff}}\text{,}$$
(8)
$${A}_{eff}=\frac{{\left[{\displaystyle \iint \iint E\left(x,y\right)E*\left(x,y\right)\mathrm{d}x\mathrm{d}y}\right]}^{\text{2}}}{\iint \iint {\left[E\left(x,y\right)E*\left(x,y\right)\right]}^{\text{2}}\mathrm{d}x\mathrm{d}y}\text{,}$$
(9)
$$\gamma =\frac{2\pi {n}_{2}}{\lambda}\text{\hspace{0.17em}}\frac{{\displaystyle \iint \iint {\left[E\left(x,y\right)E*\left(x,y\right)\right]}^{\text{2}}\mathrm{d}x\mathrm{d}y}}{{\left[{\displaystyle \iint \iint E\left(x,y\right)E*\left(x,y\right)\mathrm{d}x\mathrm{d}y}\right]}^{\text{2}}}\text{.}$$
(10)
$$D=-\frac{2\pi c}{{\lambda}^{2}}\text{\hspace{0.17em}}\frac{{\mathrm{d}}^{2}\beta}{\mathrm{d}{\omega}^{\text{2}}}\text{,}$$