Abstract

It has been suggested that Sun induced chlorophyll fluorescence (SICF) signals could be used to estimate phytoplankton chlorophyll concentration and to investigate algal physiology from space. However, water-leaving SICF is also a product of the ambient light field. In coastal waters both algal and nonalgal materials affect the underwater light field. In this study we examine the independent impacts of varying loads of mineral suspended solids (MSS) and colored dissolved organic materials (CDOM) on water-leaving SICF signals using Hydrolight radiative transfer simulations. We show that SICF signals in coastal waters are strongly influenced by nonalgal materials. Increasing concentrations of CDOM and minerals can reduce the water-leaving SICF per unit chlorophyll by over 50% for the concentration ranges explored here (CDOM = 0 to 1m1 at 440nm, MSS=0 to 10  g  m3). The moderate-resolution imaging spectroradiometer (MODIS) fluorescence line height algorithm is shown to be relatively unaffected by increasing CDOM, but performance is significantly degraded by mineral concentrations greater than 5  g  m3 owing to increased background radiance levels. The combination of these two effects means that caution is required for the interpretation of SICF signals from coastal waters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Gohin, S. Loyer, M. Lunven, C. Labry, J.-M. Froidefond, D. Delmas, M. Huret, and A. Herbland, "Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay," Remote Sens. Environ. 95, 29-46 (2005).
    [CrossRef]
  2. D. McKee, A. Cunningham, and A. Dudek, "Optical water type discrimination and tuning remote sensing band-ratio algorithms: application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas," Estuarine Coastal Shelf Sci. 73, 827-834 (2007).
    [CrossRef]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002).
    [CrossRef] [PubMed]
  4. R. A. Neville and J. F. R. Gower, "Passive remote sensing of phytoplankton via chlorophyll α fluorescence," J. Geophys. Res. 82, 3487-3493 (1977).
    [CrossRef]
  5. D. A. Kiefer, W. S. Chamberlin, and C. R. Booth, "Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre," Limnol. Oceanogr. 34, 868-881 (1989).
    [CrossRef]
  6. R. M. Letelier and M. R. Abbott, "An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
    [CrossRef]
  7. M. Babin, A. Morel, and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
    [CrossRef]
  8. Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS Sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr.: Methods 3, 108-130 (2005).
    [CrossRef]
  9. G. Dall'Olmo and A. A. Gitelson, "Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
    [CrossRef] [PubMed]
  10. W. S. Chamberlin, C. R. Booth, D. A. Kiefer, J. H. Morrow, and R. C. Murphy, "Evidence for a simple relationship between natural fluorescence, photosynthesis, and chlorophyll in the sea," Deep-Sea Res. , Part A 37, 951-973 (1990).
    [CrossRef]
  11. W. S. Chamberlin and J. Marra, "Estimation of photosynthetic rate from measurements of natural fluorescence: analysis of the effects of light and temperature," Deep-Sea Res., Part A 39, 1695-1706 (1992).
    [CrossRef]
  12. D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-179.
  13. J. R. Morrison, "in situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model," Limnol. Oceanogr. 48, 618-631 (2003).
    [CrossRef]
  14. G. W. Kattawar and J. C. Vastano, "Exact 1-D solution to the problem of chlorophyll fluorescence from the ocean," Appl. Opt. 21, 2489-2492 (1982).
    [CrossRef] [PubMed]
  15. S. Maritorena, A. Morel, and B. Gentili, "Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat," Appl. Opt. 39, 6725-6737 (2000).
    [CrossRef]
  16. R. M. Letelier, M. R. Abbott, and D. M. Karl, "Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean," Geophys. Res. Lett. 24, 409-412 (1997).
    [CrossRef]
  17. S. Johnson, "Moderate resolution imaging spectroradiometer (MODIS) technical specification sheet," RTSC MS 3/05 DTS00-0830, Raytheon Space and Airborne Systems, Santa Barbara Remote Sensing, Santa Barbara California (2002).
  18. J.-L. Bézy, S. Delwart, and M. Rast, "MERIS--a new generation of ocean-colour sensor onboard Envisat," ESA Bulletin 103, pp. 48-56 (2000), http://www.esa.int/esapub/bulletin/bullet103/besy103.pdf.
  19. M. R. Abbott and R. M. Letelier, "Algorithm theoretical basis document. Chlorophyll fluorescence (MODIS product number 20)," NASA (1999).
  20. C. S. Roesler and M. J. Perry, "in situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, 13279-13294 (1995).
    [CrossRef]
  21. J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption, and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
    [CrossRef]
  22. J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
    [CrossRef]
  23. R. Doerffer, K. Sørensen, and J. Aiken, "MERIS potential for coastal zone applications," Int. J. Rem. Sens. 20, 1809-1818 (1999).
    [CrossRef]
  24. J. E. Coleman, R. A. Reynolds, M. C. Talbot, M. Twardowski, and M. J. Perry, "Utilization of solar-induced chlorophyll a fluorescence as an indicator of phytoplankton biomass in coastal waters," in Proceedings of Ocean Optics XV, Monaco, France, S. G. Ackleson, ed. (2000).
  25. F. E. Hoge, P. E. Lyon, R. N. Swift, J. K. Yungel, M. R. Abbott, R. M. Letelier, and W. E. Esaias, "Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results," Appl. Opt. 42, 2767-2771 (2003).
    [CrossRef] [PubMed]
  26. S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii, "Limnol. Oceanogr. 50, 1499-1510 (2005).
    [CrossRef]
  27. D. McKee and A. Cunningham, "Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents," Estuarine Coastal Shelf Sci. 68, 305-316 (2006).
    [CrossRef]
  28. D. J. Collins, D. A. Kiefer, J. B. SooHoo, and I. S. McDermid, "The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission," Deep-Sea Res., Part A 32, 983-1003 (1985).
    [CrossRef]
  29. W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
    [CrossRef]
  30. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  31. R. C. Smith and K. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
    [CrossRef] [PubMed]
  32. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
    [CrossRef]
  33. G. Fournier and J. L. Forand, "Analytic phase function for ocean water," in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 194-201 (1994).
  34. G. Fournier and M. Jonasz, "Computer-based underwater imaging analysis," in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 62-77 (1999).
  35. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
    [CrossRef] [PubMed]
  36. K. L. Carder, F. R. Chen, and S. K. Hawes, "Algorithm theoretical basis document (ATBD) 20: Instantaneous photosynthetically available radiation and absorbed radiation by phytoplankton," MODIS Ocean Science Team, NASA (2003).

2007 (1)

D. McKee, A. Cunningham, and A. Dudek, "Optical water type discrimination and tuning remote sensing band-ratio algorithms: application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas," Estuarine Coastal Shelf Sci. 73, 827-834 (2007).
[CrossRef]

2006 (1)

D. McKee and A. Cunningham, "Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents," Estuarine Coastal Shelf Sci. 68, 305-316 (2006).
[CrossRef]

2005 (4)

S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii, "Limnol. Oceanogr. 50, 1499-1510 (2005).
[CrossRef]

F. Gohin, S. Loyer, M. Lunven, C. Labry, J.-M. Froidefond, D. Delmas, M. Huret, and A. Herbland, "Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay," Remote Sens. Environ. 95, 29-46 (2005).
[CrossRef]

Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS Sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr.: Methods 3, 108-130 (2005).
[CrossRef]

G. Dall'Olmo and A. A. Gitelson, "Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
[CrossRef] [PubMed]

2003 (3)

J. R. Morrison, "in situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model," Limnol. Oceanogr. 48, 618-631 (2003).
[CrossRef]

K. L. Carder, F. R. Chen, and S. K. Hawes, "Algorithm theoretical basis document (ATBD) 20: Instantaneous photosynthetically available radiation and absorbed radiation by phytoplankton," MODIS Ocean Science Team, NASA (2003).

F. E. Hoge, P. E. Lyon, R. N. Swift, J. K. Yungel, M. R. Abbott, R. M. Letelier, and W. E. Esaias, "Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results," Appl. Opt. 42, 2767-2771 (2003).
[CrossRef] [PubMed]

2002 (3)

C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
[CrossRef] [PubMed]

S. Johnson, "Moderate resolution imaging spectroradiometer (MODIS) technical specification sheet," RTSC MS 3/05 DTS00-0830, Raytheon Space and Airborne Systems, Santa Barbara Remote Sensing, Santa Barbara California (2002).

S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

2000 (3)

J.-L. Bézy, S. Delwart, and M. Rast, "MERIS--a new generation of ocean-colour sensor onboard Envisat," ESA Bulletin 103, pp. 48-56 (2000), http://www.esa.int/esapub/bulletin/bullet103/besy103.pdf.

S. Maritorena, A. Morel, and B. Gentili, "Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat," Appl. Opt. 39, 6725-6737 (2000).
[CrossRef]

J. E. Coleman, R. A. Reynolds, M. C. Talbot, M. Twardowski, and M. J. Perry, "Utilization of solar-induced chlorophyll a fluorescence as an indicator of phytoplankton biomass in coastal waters," in Proceedings of Ocean Optics XV, Monaco, France, S. G. Ackleson, ed. (2000).

1999 (4)

J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption, and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
[CrossRef]

R. Doerffer, K. Sørensen, and J. Aiken, "MERIS potential for coastal zone applications," Int. J. Rem. Sens. 20, 1809-1818 (1999).
[CrossRef]

G. Fournier and M. Jonasz, "Computer-based underwater imaging analysis," in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 62-77 (1999).

M. R. Abbott and R. M. Letelier, "Algorithm theoretical basis document. Chlorophyll fluorescence (MODIS product number 20)," NASA (1999).

1997 (2)

R. M. Letelier, M. R. Abbott, and D. M. Karl, "Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean," Geophys. Res. Lett. 24, 409-412 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

1996 (2)

R. M. Letelier and M. R. Abbott, "An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
[CrossRef]

M. Babin, A. Morel, and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
[CrossRef]

1995 (1)

C. S. Roesler and M. J. Perry, "in situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, 13279-13294 (1995).
[CrossRef]

1994 (1)

G. Fournier and J. L. Forand, "Analytic phase function for ocean water," in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 194-201 (1994).

1992 (1)

W. S. Chamberlin and J. Marra, "Estimation of photosynthetic rate from measurements of natural fluorescence: analysis of the effects of light and temperature," Deep-Sea Res., Part A 39, 1695-1706 (1992).
[CrossRef]

1990 (3)

J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
[CrossRef]

W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
[CrossRef]

W. S. Chamberlin, C. R. Booth, D. A. Kiefer, J. H. Morrow, and R. C. Murphy, "Evidence for a simple relationship between natural fluorescence, photosynthesis, and chlorophyll in the sea," Deep-Sea Res. , Part A 37, 951-973 (1990).
[CrossRef]

1989 (1)

D. A. Kiefer, W. S. Chamberlin, and C. R. Booth, "Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre," Limnol. Oceanogr. 34, 868-881 (1989).
[CrossRef]

1985 (1)

D. J. Collins, D. A. Kiefer, J. B. SooHoo, and I. S. McDermid, "The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission," Deep-Sea Res., Part A 32, 983-1003 (1985).
[CrossRef]

1982 (1)

1981 (2)

R. C. Smith and K. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

1977 (1)

R. A. Neville and J. F. R. Gower, "Passive remote sensing of phytoplankton via chlorophyll α fluorescence," J. Geophys. Res. 82, 3487-3493 (1977).
[CrossRef]

Appl. Opt. (8)

Deep-Sea Res. (1)

W. S. Chamberlin, C. R. Booth, D. A. Kiefer, J. H. Morrow, and R. C. Murphy, "Evidence for a simple relationship between natural fluorescence, photosynthesis, and chlorophyll in the sea," Deep-Sea Res. , Part A 37, 951-973 (1990).
[CrossRef]

Deep-Sea Res., Part A (2)

W. S. Chamberlin and J. Marra, "Estimation of photosynthetic rate from measurements of natural fluorescence: analysis of the effects of light and temperature," Deep-Sea Res., Part A 39, 1695-1706 (1992).
[CrossRef]

D. J. Collins, D. A. Kiefer, J. B. SooHoo, and I. S. McDermid, "The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission," Deep-Sea Res., Part A 32, 983-1003 (1985).
[CrossRef]

Estuarine Coastal Shelf Sci. (2)

D. McKee and A. Cunningham, "Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents," Estuarine Coastal Shelf Sci. 68, 305-316 (2006).
[CrossRef]

D. McKee, A. Cunningham, and A. Dudek, "Optical water type discrimination and tuning remote sensing band-ratio algorithms: application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas," Estuarine Coastal Shelf Sci. 73, 827-834 (2007).
[CrossRef]

Geophys. Res. Lett. (1)

R. M. Letelier, M. R. Abbott, and D. M. Karl, "Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean," Geophys. Res. Lett. 24, 409-412 (1997).
[CrossRef]

Int. J. Rem. Sens. (1)

R. Doerffer, K. Sørensen, and J. Aiken, "MERIS potential for coastal zone applications," Int. J. Rem. Sens. 20, 1809-1818 (1999).
[CrossRef]

Int. J. Remote Sens. (3)

J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption, and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
[CrossRef]

J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
[CrossRef]

M. Babin, A. Morel, and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
[CrossRef]

J. Geophys. Res. (2)

R. A. Neville and J. F. R. Gower, "Passive remote sensing of phytoplankton via chlorophyll α fluorescence," J. Geophys. Res. 82, 3487-3493 (1977).
[CrossRef]

C. S. Roesler and M. J. Perry, "in situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, 13279-13294 (1995).
[CrossRef]

Limnol. Oceanogr. (5)

J. R. Morrison, "in situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model," Limnol. Oceanogr. 48, 618-631 (2003).
[CrossRef]

D. A. Kiefer, W. S. Chamberlin, and C. R. Booth, "Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre," Limnol. Oceanogr. 34, 868-881 (1989).
[CrossRef]

S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii, "Limnol. Oceanogr. 50, 1499-1510 (2005).
[CrossRef]

W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Limnol. Oceanogr.: Methods (1)

Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS Sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr.: Methods 3, 108-130 (2005).
[CrossRef]

Remote Sens. Environ. (2)

R. M. Letelier and M. R. Abbott, "An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
[CrossRef]

F. Gohin, S. Loyer, M. Lunven, C. Labry, J.-M. Froidefond, D. Delmas, M. Huret, and A. Herbland, "Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay," Remote Sens. Environ. 95, 29-46 (2005).
[CrossRef]

Other (8)

S. Johnson, "Moderate resolution imaging spectroradiometer (MODIS) technical specification sheet," RTSC MS 3/05 DTS00-0830, Raytheon Space and Airborne Systems, Santa Barbara Remote Sensing, Santa Barbara California (2002).

J.-L. Bézy, S. Delwart, and M. Rast, "MERIS--a new generation of ocean-colour sensor onboard Envisat," ESA Bulletin 103, pp. 48-56 (2000), http://www.esa.int/esapub/bulletin/bullet103/besy103.pdf.

M. R. Abbott and R. M. Letelier, "Algorithm theoretical basis document. Chlorophyll fluorescence (MODIS product number 20)," NASA (1999).

D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-179.

J. E. Coleman, R. A. Reynolds, M. C. Talbot, M. Twardowski, and M. J. Perry, "Utilization of solar-induced chlorophyll a fluorescence as an indicator of phytoplankton biomass in coastal waters," in Proceedings of Ocean Optics XV, Monaco, France, S. G. Ackleson, ed. (2000).

G. Fournier and J. L. Forand, "Analytic phase function for ocean water," in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 194-201 (1994).

G. Fournier and M. Jonasz, "Computer-based underwater imaging analysis," in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 62-77 (1999).

K. L. Carder, F. R. Chen, and S. K. Hawes, "Algorithm theoretical basis document (ATBD) 20: Instantaneous photosynthetically available radiation and absorbed radiation by phytoplankton," MODIS Ocean Science Team, NASA (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Material-specific absorption and scattering spectra used for Hydrolight radiative transfer simulations were selected as representative of constituent populations previously observed in coastal waters of the Irish Sea.

Fig. 2
Fig. 2

True water-leaving fluorescence signal, L f 685 , is obtained by subtracting water-leaving radiances calculated from radiative transfer simulations with and without chlorophyll fluorescence. The MODIS FLH algorithm estimates the fluorescence line height at 676 nm by interpolating a linear baseline between neighboring wavebands at 667 and 748 nm . This is off-center from the peak fluorescence emission waveband at 685 nm , but can be compared with true fluorescence line heights at 676 nm derived from radiative transfer simulations.

Fig. 3
Fig. 3

(a) In Case 1 waters the subsurface ( 0 ) water-leaving fluorescence signal, L f 685 , increases nonlinearly with Chl, while L f 685 per unit chlorophyll decreases. (b) Increasing Chl raises both K o ex and E o ex (and also a em not shown), which results in the observed decrease in L f 685 / Chl .

Fig. 4
Fig. 4

(a) and (c) Increasing concentrations of CDOM reduce subsurface ( 0 ) water-leaving fluorescence signals by up to 65 % , with L f 685 / Chl varying by a factor of 2 for this range of CDOM. (b) and (d) Small concentrations of MSS slightly increase L f 685 / Chl but larger concentrations have the opposite effect.

Fig. 5
Fig. 5

The average diffuse attenuation coefficient for scalar irradiance in the excitation waveband, K o ex , increases with both (a) CDOM and (b) MSS. However, it is more sensitive to MSS, which scatters as well as absorbs ( MSS = 10   g   m 3 has a similar average absorption coefficient to CDOM = 0.5 m 1 in the excitation waveband).

Fig. 6
Fig. 6

(a) CDOM absorption reduces integrated subsurface scalar irradiance in the excitation waveband, E o ex , as CDOM increases. (b) MSS scattering raises E o ex , even though MSS also absorbs in the fluorescence excitation waveband.

Fig. 7
Fig. 7

Values of the effective quantum yield for fluorescence calculated using Eq. (4). (a) Increasing CDOM reduces estimates of ϕ, while (b) increasing MSS leads to overestimates of ϕ. The true value of ϕ was 0.020 for these simulations.

Fig. 8
Fig. 8

(a) Effect of increasing CDOM absorption is generally to lower water-leaving radiances in the fluorescence emission waveband. (b) Increasing MSS to 10   g   m 3 increases background water-leaving radiances by an order of magnitude, and causes the Chl fluorescence peak to become less prominent. Note the order of magnitude difference in y axis scales in panels (a) and (b).

Fig. 9
Fig. 9

(a) MODIS FLH algorithm generally underestimates the true fluorescence signal at 676 nm ( L f 676 ) with the effect becoming more pronounced as both Chl and CDOM increase. (b) High concentrations of MSS cause the MODIS FLH algorithm to overestimate L f 676 by up to an order of magnitude when Chl is low and underestimate by as much as 70 % when Chl is high.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ = F f / A ex .
A ex = Chl a ¯ ex * E o ex ,
a ¯ ex * = λ ex a * ( λ ) E o ex ( λ ) d λ / λ ex E o ex ( λ ) d λ .
L f q ( z ) = ϕ a ¯ ex * Chl E o ex ( z ) 4 π ( a em + K o ex ) .

Metrics