Abstract

The nonvolatile holographic storage of a near-stoichiometric LiNbO3:Cu:Ce crystal with green light was investigated. With an increase in composition, improved nonvolatile holographic performance was obtained. The sensitivity S of the near-stoichiometric LN49 .57:Cu:Ce crystal is 1 order of magnitude larger than the congruent crystal. And according to our research, Ce ions should be the deep centers of the LiNbO3:Cu:Ce crystal.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
    [CrossRef]
  2. J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
    [CrossRef]
  3. F. Micheron and G. Bismuth, "Electrical control of fixation and erasure of holographic patterns in ferroelectric materials," Appl. Phys. Lett. 20, 79-81 (1972).
    [CrossRef]
  4. K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
    [CrossRef]
  5. Y. Liu, L. Liu, C. Zhou, and L. Xu, "Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals," Opt. Lett. 25, 908-910 (2000).
    [CrossRef]
  6. T. Zhang, B. Wang, S. Fang, and D. Ma, "Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO3 crystal," J. Phys. D 38, 2013-2016 (2005).
    [CrossRef]
  7. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1996).
    [CrossRef]
  8. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter, "Photorefractive properties of iron-doped stoichiometric lithium niobate," Opt. Lett. 22, 501-503 (1997).
    [CrossRef] [PubMed]
  9. H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, "Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron," Opt. Mater. 28, 212-215 (2006).
    [CrossRef]
  10. Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
    [CrossRef]
  11. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
    [CrossRef] [PubMed]
  12. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
    [CrossRef]
  13. Y. Liu, L. Liu, C. Zhou, and L. Xu, "Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals," Opt. Lett. 25, 908-910 (2000).
    [CrossRef]
  14. L. Ren, L. Liu, D. Liu, J. Zu, and Z. Luan, "Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram," Opt. Lett. 29, 186-188 (2004).
    [CrossRef] [PubMed]
  15. Q. Dong, L. Liu, D. Liu, C. Dai, and L. Ren, "Effect of dopant composition ratio on nonvolatile holographic recording in LiNbO3:Cu:Ce crystals," Appl. Opt. 43, 5016-5022 (2004).
    [CrossRef] [PubMed]
  16. B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, "Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra."Solid State Commun. 14, 1233-1236 (1974).
    [CrossRef]
  17. P. F. Borbui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, "Preparation and characterization of off-congruent lithium niobate crystals," J. Appl. Phys. 71, 875-879 (1992).
    [CrossRef]
  18. M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterise the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
    [CrossRef]
  19. Y. Liu, L. Liu, and C. Zhou, "Prescription for optimizing holograms in LiNbO3:Fe:Mn," Opt. Lett. 25, 551-553 (2000).
    [CrossRef]
  20. A. Adibi, K. Buse, and D. Psaltis, "Effect of annealing in two-center holographic recording," Appl. Phys. Lett. 74, 3767-3769 (1999).
    [CrossRef]
  21. A. Adibi, K. Buse, and D. Psaltis, "Sensitivity improvement in two-center holographic recording," Opt. Lett. 15, 539-541 (2000).
    [CrossRef]
  22. N. Iyi, K. Kitammura, F. Izumi, J. K. Yamamoto, T. Hayashi, and S. Kimura, "Comparative study of defect structures in lithium niobate with different compositions," J. Solid State Chem. 101, 340-352 (1992).
    [CrossRef]
  23. O. Schirmerm, O. Themann, and M. Wöehlecke, "Defects In LiNbO3: I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
    [CrossRef]
  24. H. J. Reyher, R. Schulz, and O. Thiemann, "Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques," Phys. Rev. B 50, 3609-3619 (1994).
    [CrossRef]
  25. W. Yan, Y. Kong, L. Shi, L. Sun, H. Liu, X. Li, D. Zhao, and J. Xu, "The influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity," Appl. Opt. 45, 2453-2458 (2006).
    [CrossRef] [PubMed]

2006 (2)

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, "Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron," Opt. Mater. 28, 212-215 (2006).
[CrossRef]

W. Yan, Y. Kong, L. Shi, L. Sun, H. Liu, X. Li, D. Zhao, and J. Xu, "The influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity," Appl. Opt. 45, 2453-2458 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Zhang, B. Wang, S. Fang, and D. Ma, "Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO3 crystal," J. Phys. D 38, 2013-2016 (2005).
[CrossRef]

2004 (2)

2000 (4)

1999 (1)

A. Adibi, K. Buse, and D. Psaltis, "Effect of annealing in two-center holographic recording," Appl. Phys. Lett. 74, 3767-3769 (1999).
[CrossRef]

1998 (3)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
[CrossRef]

1997 (2)

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter, "Photorefractive properties of iron-doped stoichiometric lithium niobate," Opt. Lett. 22, 501-503 (1997).
[CrossRef] [PubMed]

1996 (2)

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterise the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1996).
[CrossRef]

1995 (1)

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef]

1994 (1)

H. J. Reyher, R. Schulz, and O. Thiemann, "Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques," Phys. Rev. B 50, 3609-3619 (1994).
[CrossRef]

1992 (2)

N. Iyi, K. Kitammura, F. Izumi, J. K. Yamamoto, T. Hayashi, and S. Kimura, "Comparative study of defect structures in lithium niobate with different compositions," J. Solid State Chem. 101, 340-352 (1992).
[CrossRef]

P. F. Borbui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, "Preparation and characterization of off-congruent lithium niobate crystals," J. Appl. Phys. 71, 875-879 (1992).
[CrossRef]

1991 (1)

O. Schirmerm, O. Themann, and M. Wöehlecke, "Defects In LiNbO3: I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

1974 (1)

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, "Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra."Solid State Commun. 14, 1233-1236 (1974).
[CrossRef]

1972 (1)

F. Micheron and G. Bismuth, "Electrical control of fixation and erasure of holographic patterns in ferroelectric materials," Appl. Phys. Lett. 20, 79-81 (1972).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterise the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

A. Adibi, K. Buse, and D. Psaltis, "Effect of annealing in two-center holographic recording," Appl. Phys. Lett. 74, 3767-3769 (1999).
[CrossRef]

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

F. Micheron and G. Bismuth, "Electrical control of fixation and erasure of holographic patterns in ferroelectric materials," Appl. Phys. Lett. 20, 79-81 (1972).
[CrossRef]

J. Appl. Phys. (2)

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1996).
[CrossRef]

P. F. Borbui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, "Preparation and characterization of off-congruent lithium niobate crystals," J. Appl. Phys. 71, 875-879 (1992).
[CrossRef]

J. Phys. Chem. Solids (1)

O. Schirmerm, O. Themann, and M. Wöehlecke, "Defects In LiNbO3: I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

J. Phys. D (1)

T. Zhang, B. Wang, S. Fang, and D. Ma, "Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO3 crystal," J. Phys. D 38, 2013-2016 (2005).
[CrossRef]

J. Solid State Chem. (1)

N. Iyi, K. Kitammura, F. Izumi, J. K. Yamamoto, T. Hayashi, and S. Kimura, "Comparative study of defect structures in lithium niobate with different compositions," J. Solid State Chem. 101, 340-352 (1992).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (1)

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, "Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron," Opt. Mater. 28, 212-215 (2006).
[CrossRef]

Phys. Rev. B (1)

H. J. Reyher, R. Schulz, and O. Thiemann, "Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques," Phys. Rev. B 50, 3609-3619 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Solid State Commun. (1)

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, "Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra."Solid State Commun. 14, 1233-1236 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic experimental arrangement for the ULIA measurement.

Fig. 2
Fig. 2

Experimental setup of the nonvolatile holography storage.

Fig. 3
Fig. 3

Experimental results of ULIA for LiNbO 3 : Cu:Ce crystals with various compositions.

Fig. 4
Fig. 4

Diffraction efficient η during a typical record-fix-erase process, where the intensity of the total of the recording green light and sensitizing UV light are 1200 and 60 mW / cm 2 .

Fig. 5
Fig. 5

Nonvolatile holographic performance of LiNbO 3 : Cu:Ce crystals with various compositions on the same experimental conditions.

Fig. 6
Fig. 6

(a),(b) UV-visible absorption spectra for LiNbO 3 : Ce and LiNbO 3 : Cu before and after reduction, respectively.

Tables (1)

Tables Icon

Table 1 Values of Composition, Δα, η s , and S′ of All Crystals

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ α = 1 d L n ( T with T without ) ,
S = 1 I Rec L | d η d t | t = 0 .
| d η d t | t = 0
S = S β = β 1 I Rec L | d η d t | t = 0 .

Metrics