Abstract

We have demonstrated key advances towards a solid-state laser amplifier at 1.03 μm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Sridharan, "Yb:YAG master oscillator power amplifier and PPLN optical parametric amplifiers for remote wind sensing," Ph.D. dissertation (Stanford University, 2007).
  2. S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
    [CrossRef]
  4. P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.
  5. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, "Coherent lidar airborne wind sensor II: flight test results at 2 and 10 μm," Appl. Opt. 35, 7117-7127 (1996).
    [CrossRef] [PubMed]
  6. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzer, and M. Petros, "1 J/pulse Q-switched 2 μm solid state laser," Opt. Lett. 31, 462-464 (2006).
    [CrossRef] [PubMed]
  7. V. Srivastava, J. Rothermal, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. M. McCaul, "Wavelength dependence of backscatter by use of aerosol microphysics lidar data sets: application to 2.1-μm wavelength for space-based and airborne lidars," Appl. Opt. 40, 4759-4769 (2001).
    [CrossRef]
  8. S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994).
    [CrossRef]
  9. S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).
  10. J. E. Midwinter, "The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers," Br. J. Appl. Phys. 16, 1125-1133 (1965).
    [CrossRef]
  11. E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975).
    [CrossRef]
  12. W. E. Schmid, "Pulse stretching in a Q-switched Nd:YAG laser," IEEE J. Quantum Electron. QE-16, 790-794 (1980).
    [CrossRef]
  13. J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
    [CrossRef]
  14. J. P. Roberts, K. W. Hosack, A. J. Taylor, J. Weston, and R. N. Ettelbrick, "Efficient frequency-doubled long pulse generation with a Nd:Glass/Nd:YAG oscillator-amplifier," Opt. Lett. 18, 429-431 (1993).
    [CrossRef] [PubMed]
  15. N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
    [CrossRef]
  16. W. Viöl and J. Uhlenbusch, "Generation of CO2 laser pulses by Q-switching and cavity dumping and their amplification by a microwave excited CO2 laser," J. Phys. D 29, 57-67 (1996).
    [CrossRef]
  17. W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, 5th ed. (Springer-Verlag, 1999).
  18. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
    [CrossRef]
  19. M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983).
    [CrossRef]
  20. D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986).
    [CrossRef]
  21. Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993).
    [CrossRef]
  22. T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
    [CrossRef] [PubMed]
  23. M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
    [CrossRef]
  24. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
    [CrossRef]
  25. M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
    [CrossRef]
  26. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
    [CrossRef]
  27. L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
    [CrossRef]
  28. H. Bruesselbach and D. S. Sumida, "69-W-average-power Yb:YAG laser," Opt. Lett. 21, 450-462 (1996).
    [CrossRef]
  29. L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
    [CrossRef]
  30. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
    [CrossRef]
  31. T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
    [CrossRef]
  32. P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
    [CrossRef]
  33. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.
  34. L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]
  35. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2002).
  36. R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
    [CrossRef]
  37. W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).
  38. W. B. Jones, "Face pumped laser with diffraction limited output beam," U.S. patent 4,214,216 (22 July 1980).
  39. W. B. Jones, "Slab geometry laser," in Handbook of Solid-State Lasers (Marcel Dekker, 1989), pp. 581-612.
  40. T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
    [CrossRef]
  41. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
    [CrossRef]
  42. T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
    [CrossRef]
  43. R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00 mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
    [CrossRef] [PubMed]
  44. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
    [CrossRef]
  45. A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006).
    [CrossRef] [PubMed]
  46. A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
    [CrossRef] [PubMed]
  47. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
    [CrossRef]
  48. J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
    [CrossRef]
  49. R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
    [CrossRef]
  50. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.
  51. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "Coherent combination of high-power, zigzag slab lasers," Opt. Lett. 31, 1247-1249 (2006).
    [CrossRef] [PubMed]
  52. B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
    [CrossRef]
  53. L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, "Laser driver for soft-x-ray projection lithography," Appl. Opt. 32, 6914-6919 (1993).
    [CrossRef] [PubMed]
  54. M. J. Shoup III, J. H. Kelly, and D. L. Smith, "Design and testing of a large-aperture, high-gain, Brewster's angle zigzag Nd:glass slab amplifier," Appl. Opt. 36, 5827-5838 (1997).
    [CrossRef] [PubMed]
  55. N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).
  56. N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992).
    [CrossRef]
  57. N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993).
    [CrossRef] [PubMed]
  58. Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003).
    [CrossRef]
  59. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
    [CrossRef]
  60. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
    [CrossRef]
  61. T. Y. Chung and M. Bass, "General analysis of slab lasers using geometrical optics," Appl. Opt. 46, 581-590 (2007).
    [CrossRef] [PubMed]
  62. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.
  63. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).
  64. A. Giesen, "High power thin disk lasers and applications," in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (IEEE, 2005), pp. 750-751.
  65. C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  66. H. E. Meissner and J. M. McMahon, "Composite solid state lasers of improved efficiency and beam quality," U.S. patent 5,563,899 (8 October 1996).
  67. N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).
  68. A. E. Siegman, Lasers (University Science Books, 1987).
  69. R. J. Beach, "Optimization of quasi-three level end-pumped Q-switched lasers," IEEE J. Quantum Electron. 31, 1606-1613 (1995).
    [CrossRef]
  70. W. Long, Northrup Grumman Space Technology (personal communication, 2005).
  71. D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).
  72. H. T. Powell, "Composite polymer/glass edge cladding for Nova replacement disks," Tech. Rep. UCRL 50021-86 (Lawrence Livermore National Laboratory, 1986).
  73. A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).
  74. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

2004 (5)

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

2003 (1)

2002 (1)

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

2001 (2)

2000 (2)

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

1999 (1)

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

1997 (3)

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

M. J. Shoup III, J. H. Kelly, and D. L. Smith, "Design and testing of a large-aperture, high-gain, Brewster's angle zigzag Nd:glass slab amplifier," Appl. Opt. 36, 5827-5838 (1997).
[CrossRef] [PubMed]

1996 (3)

1995 (2)

R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00 mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
[CrossRef] [PubMed]

R. J. Beach, "Optimization of quasi-three level end-pumped Q-switched lasers," IEEE J. Quantum Electron. 31, 1606-1613 (1995).
[CrossRef]

1994 (4)

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

1993 (6)

Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

J. P. Roberts, K. W. Hosack, A. J. Taylor, J. Weston, and R. N. Ettelbrick, "Efficient frequency-doubled long pulse generation with a Nd:Glass/Nd:YAG oscillator-amplifier," Opt. Lett. 18, 429-431 (1993).
[CrossRef] [PubMed]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, "Laser driver for soft-x-ray projection lithography," Appl. Opt. 32, 6914-6919 (1993).
[CrossRef] [PubMed]

N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993).
[CrossRef] [PubMed]

1992 (3)

N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992).
[CrossRef]

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
[CrossRef]

1991 (1)

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

1990 (1)

N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).

1989 (1)

J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

1988 (2)

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
[CrossRef]

1987 (2)

T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987).
[CrossRef] [PubMed]

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

1986 (2)

T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986).
[CrossRef]

1985 (1)

T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
[CrossRef]

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

1983 (2)

T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
[CrossRef]

M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983).
[CrossRef]

1980 (1)

W. E. Schmid, "Pulse stretching in a Q-switched Nd:YAG laser," IEEE J. Quantum Electron. QE-16, 790-794 (1980).
[CrossRef]

1975 (1)

E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975).
[CrossRef]

1965 (2)

J. E. Midwinter, "The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers," Br. J. Appl. Phys. 16, 1125-1133 (1965).
[CrossRef]

L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
[CrossRef]

1963 (1)

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Aggarwal, R. L.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

Albrecht, G.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Alfrey, A. J.

Ames, L. L.

Avizonis, P. V.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Bai, Y.

Bass, M.

T. Y. Chung and M. Bass, "General analysis of slab lasers using geometrical optics," Appl. Opt. 46, 581-590 (2007).
[CrossRef] [PubMed]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003).
[CrossRef]

Beach, R.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Beach, R. J.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

R. J. Beach, "Optimization of quasi-three level end-pumped Q-switched lasers," IEEE J. Quantum Electron. 31, 1606-1613 (1995).
[CrossRef]

L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, "Laser driver for soft-x-ray projection lithography," Appl. Opt. 32, 6914-6919 (1993).
[CrossRef] [PubMed]

Benett, W. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Benfey, D. P.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

Berg, J. G.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Bibeau, C. M.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Bowdle, D. A.

Bradley, L. L. T.

E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

Brockman, P.

Brown, D. C.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

Bruesselbach, H.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

Byer, R. L.

A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006).
[CrossRef] [PubMed]

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00 mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
[CrossRef] [PubMed]

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
[CrossRef]

A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Byvik, C. E.

Calloway, R. S.

Charlton, A.

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Chen, B.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003).
[CrossRef]

Chen, S.

Chen, Y.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003).
[CrossRef]

Chernoch, J. P.

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

Cheung, E. C.

Chicklis, E. P.

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

Choi, H. K.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

Chung, T. Y.

Clarke, A. D.

Comaskey, B. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Contag, K.

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Cutten, D. R.

Dane, C. B.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Deng, P.

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

Dickinson, M. R.

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

Dong, S.

N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993).
[CrossRef] [PubMed]

Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993).
[CrossRef]

Eckardt, R. C.

T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986).
[CrossRef]

T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

Emanuel, M. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Epp, P.

Ettelbrick, R. N.

Fan, T. Y.

T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

Farinas, A. D.

Forney, P.

Frantz, L. M.

J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

Franz, L. M.

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Freitas, B. L.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Gates, G.

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

Gatt, P.

S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).

Gehm, W. J.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

Geisen, A.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
[CrossRef]

Giesen, A.

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

A. Giesen, "High power thin disk lasers and applications," in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (IEEE, 2005), pp. 750-751.

Goodno, G. D.

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "Coherent combination of high-power, zigzag slab lasers," Opt. Lett. 31, 1247-1249 (2006).
[CrossRef] [PubMed]

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.

Gustafson, E. K.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

Haag, G.

M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983).
[CrossRef]

Haase, T.

N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992).
[CrossRef]

N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).

Hackel, L. A.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

Hannon, S. M.

S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994).
[CrossRef]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

Harkenrider, J.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.

Harpole, G. M.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Harris, D. G.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Harrison, J.

J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
[CrossRef]

Hawley, J. G.

Haynam, C.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

Henesian, M. A.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Hilyard, R. C.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Hodgson, N.

N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993).
[CrossRef] [PubMed]

N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992).
[CrossRef]

N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).

Holmes, D. H.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

Honea, E. C.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Honig, J.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Hosack, K. W.

House, R.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Howland, D.

Huffaker, R. M.

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

Hügel, H.

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Injeyan, H.

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "Coherent combination of high-power, zigzag slab lasers," Opt. Lett. 31, 1247-1249 (2006).
[CrossRef] [PubMed]

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.

Jarzembski, M. A.

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
[CrossRef]

Jones, W. B.

W. B. Jones, "Slab geometry laser," in Handbook of Solid-State Lasers (Marcel Dekker, 1989), pp. 581-612.

W. B. Jones, "Face pumped laser with diffraction limited output beam," U.S. patent 4,214,216 (22 July 1980).

Kane, T. J.

T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
[CrossRef]

Kar, A.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Kavaya, M. J.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzer, and M. Petros, "1 J/pulse Q-switched 2 μm solid state laser," Opt. Lett. 31, 462-464 (2006).
[CrossRef] [PubMed]

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

Kelly, J. H.

King, T. A.

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

Klein, S. H.

Knights, M. G.

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, 5th ed. (Springer-Verlag, 1999).

Komine, H.

Kozlovsky, W. J.

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Lacovara, P.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

Larionov, M.

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

Lee, K. K.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

Long, W.

Lowenthal, D.

D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986).
[CrossRef]

Lu, Q.

Lü, Q.

Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

Manes, K. R.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Martin, W. S.

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

McCaul, E. M.

McClellan, M.

McMahon, J. M.

H. E. Meissner and J. M. McMahon, "Composite solid state lasers of improved efficiency and beam quality," U.S. patent 5,563,899 (8 October 1996).

McNaught, S. J.

Meissner, H. E.

H. E. Meissner and J. M. McMahon, "Composite solid state lasers of improved efficiency and beam quality," U.S. patent 5,563,899 (8 October 1996).

Menzies, R. T.

Midwinter, J. E.

J. E. Midwinter, "The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers," Br. J. Appl. Phys. 16, 1125-1133 (1965).
[CrossRef]

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Modlin, E. A.

Monroe, R. S.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Mordaunt, D. W.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Moulton, P. F.

J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
[CrossRef]

Mundinger, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Munz, M.

M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983).
[CrossRef]

Myers, L. E.

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

Nodvik, J. S.

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

Otto, R. G.

Palese, S.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.

Panarella, E.

E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975).
[CrossRef]

Patel, M. K. R.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Payne, S. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Petros, M.

Petty, C.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Petzer, P. J.

Pierre, R. J. S.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Powell, H. T.

H. T. Powell, "Composite polymer/glass edge cladding for Nova replacement disks," Tech. Rep. UCRL 50021-86 (Lawrence Livermore National Laboratory, 1986).

Rapaport, A.

Redmond, S.

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Rees, D.

S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).

Rines, G. A.

J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
[CrossRef]

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

Roberts, J. P.

Robinson, P. A.

Rothermal, J.

Rutherford, T. S.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

Saraf, S.

A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006).
[CrossRef] [PubMed]

A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).

Schmid, W. E.

W. E. Schmid, "Pulse stretching in a Q-switched Nd:YAG laser," IEEE J. Quantum Electron. QE-16, 790-794 (1980).
[CrossRef]

Schuhmann, K.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

Seka, W.

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

Senn, R.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Shaw, M.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Shine, R. J.

Shoup, M. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1987).

Simpson, R.

Singh, U. N.

Sinha, S.

Skidmore, J. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Smith, D. L.

Smith, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Solarz, R. W.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Sollee, J.

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Speiser, J.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

Spinhirne, J. D.

Sridharan, A. K.

A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006).
[CrossRef] [PubMed]

A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).

A. K. Sridharan, "Yb:YAG master oscillator power amplifier and PPLN optical parametric amplifiers for remote wind sensing," Ph.D. dissertation (Stanford University, 2007).

Srivastava, V.

Steakley, B. C.

Stewen, C.

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Stolzenburg, C.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

Stone, R.

Stowers, I. F.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

H. Bruesselbach and D. S. Sumida, "69-W-average-power Yb:YAG laser," Opt. Lett. 21, 450-462 (1996).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

Sutton, S. B.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Swanson, D.

Targ, R.

Taylor, A. J.

Thomas, M. D.

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

Thomson, J. A.

S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994).
[CrossRef]

Traggis, N.

N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

Trieu, B. C.

Tulloch, W. M.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

Uhlenbusch, J.

W. Viöl and J. Uhlenbusch, "Generation of CO2 laser pulses by Q-switching and cavity dumping and their amplification by a microwave excited CO2 laser," J. Phys. D 29, 57-67 (1996).
[CrossRef]

Uitert, L. G. V.

L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
[CrossRef]

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

Valle, T. J.

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

VanLue, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

Vetorino, S. R.

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

Viöl, W.

W. Viöl and J. Uhlenbusch, "Generation of CO2 laser pulses by Q-switching and cavity dumping and their amplification by a microwave excited CO2 laser," J. Phys. D 29, 57-67 (1996).
[CrossRef]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

Wang, C. A.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

Wannop, N. M.

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

Weber, H.

N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).

Weber, M.

Weber, M. E.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Weiss, S. B.

Weston, J.

Whitman, P. K.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Wickham, M. G.

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

Widmayer, C. C.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Williams, W.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Williams, W. H.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2002).

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Yang, P.

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

Yin, Z.

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

Yu, J.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

Zapata, L. E.

Zarifis, V.

Appl. Opt. (7)

L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, "Laser driver for soft-x-ray projection lithography," Appl. Opt. 32, 6914-6919 (1993).
[CrossRef] [PubMed]

M. J. Shoup III, J. H. Kelly, and D. L. Smith, "Design and testing of a large-aperture, high-gain, Brewster's angle zigzag Nd:glass slab amplifier," Appl. Opt. 36, 5827-5838 (1997).
[CrossRef] [PubMed]

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, "Coherent lidar airborne wind sensor II: flight test results at 2 and 10 μm," Appl. Opt. 35, 7117-7127 (1996).
[CrossRef] [PubMed]

V. Srivastava, J. Rothermal, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. M. McCaul, "Wavelength dependence of backscatter by use of aerosol microphysics lidar data sets: application to 2.1-μm wavelength for space-based and airborne lidars," Appl. Opt. 40, 4759-4769 (2001).
[CrossRef]

Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003).
[CrossRef]

A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006).
[CrossRef] [PubMed]

T. Y. Chung and M. Bass, "General analysis of slab lasers using geometrical optics," Appl. Opt. 46, 581-590 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Appl. Phys. Lett. (1)

L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965).
[CrossRef]

Br. J. Appl. Phys. (1)

J. E. Midwinter, "The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers," Br. J. Appl. Phys. 16, 1125-1133 (1965).
[CrossRef]

IEEE J. Quantum Electron. (16)

E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975).
[CrossRef]

W. E. Schmid, "Pulse stretching in a Q-switched Nd:YAG laser," IEEE J. Quantum Electron. QE-16, 790-794 (1980).
[CrossRef]

J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988).
[CrossRef]

D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999).
[CrossRef]

J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984).
[CrossRef]

T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985).
[CrossRef]

M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988).
[CrossRef]

T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
[CrossRef]

R. J. Beach, "Optimization of quasi-three level end-pumped Q-switched lasers," IEEE J. Quantum Electron. 31, 1606-1613 (1995).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993).
[CrossRef]

J. Appl. Phys. (1)

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

J. Lumin. (1)

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

J. Mod. Opt. (2)

N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).
[CrossRef]

S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994).
[CrossRef]

J. Phys. D (1)

W. Viöl and J. Uhlenbusch, "Generation of CO2 laser pulses by Q-switching and cavity dumping and their amplification by a microwave excited CO2 laser," J. Phys. D 29, 57-67 (1996).
[CrossRef]

Opt. Eng. (3)

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Opt. Laser Technol. (1)

Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993).
[CrossRef]

Opt. Lett. (11)

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991).
[CrossRef]

T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987).
[CrossRef] [PubMed]

J. P. Roberts, K. W. Hosack, A. J. Taylor, J. Weston, and R. N. Ettelbrick, "Efficient frequency-doubled long pulse generation with a Nd:Glass/Nd:YAG oscillator-amplifier," Opt. Lett. 18, 429-431 (1993).
[CrossRef] [PubMed]

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00 mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
[CrossRef] [PubMed]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzer, and M. Petros, "1 J/pulse Q-switched 2 μm solid state laser," Opt. Lett. 31, 462-464 (2006).
[CrossRef] [PubMed]

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "Coherent combination of high-power, zigzag slab lasers," Opt. Lett. 31, 1247-1249 (2006).
[CrossRef] [PubMed]

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

H. Bruesselbach and D. S. Sumida, "69-W-average-power Yb:YAG laser," Opt. Lett. 21, 450-462 (1996).
[CrossRef]

N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992).
[CrossRef]

Proc. SPIE (3)

N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Z. Phys. B (1)

M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983).
[CrossRef]

Other (19)

S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, 5th ed. (Springer-Verlag, 1999).

P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.

A. K. Sridharan, "Yb:YAG master oscillator power amplifier and PPLN optical parametric amplifiers for remote wind sensing," Ph.D. dissertation (Stanford University, 2007).

S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

W. B. Jones, "Face pumped laser with diffraction limited output beam," U.S. patent 4,214,216 (22 July 1980).

W. B. Jones, "Slab geometry laser," in Handbook of Solid-State Lasers (Marcel Dekker, 1989), pp. 581-612.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2002).

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.

H. T. Powell, "Composite polymer/glass edge cladding for Nova replacement disks," Tech. Rep. UCRL 50021-86 (Lawrence Livermore National Laboratory, 1986).

A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.

H. E. Meissner and J. M. McMahon, "Composite solid state lasers of improved efficiency and beam quality," U.S. patent 5,563,899 (8 October 1996).

N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

A. E. Siegman, Lasers (University Science Books, 1987).

W. Long, Northrup Grumman Space Technology (personal communication, 2005).

A. Giesen, "High power thin disk lasers and applications," in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (IEEE, 2005), pp. 750-751.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Damage fluence limit in Yb:YAG   J / cm 2 versus pulse width (ns). Operating with input and output fluences in the shaded region enables efficient energy extraction without optical damage.

Fig. 2
Fig. 2

(Color online) (a) Geometry of the partially filled slab at near normal incidence for a single-pass slab amplifier. The bounce period is L b and the overlap region has a length L s . The distance between the two parallel lines that indicate the beam path represent the diameter of the Gaussian beam's top-hat equivalent. In reality, the tails of the Gaussian beam profile extend to the slab's edges. w g is chosen such that clipping losses are less than 2%. (b) The active cross section of the slab has a width of 2 w T H and a thickness of t. The active area is partially filled with incident signal power. The slab's cross-section area is given as A slab = w × t .

Fig. 3
Fig. 3

(Color online) Calculated logarithmic gain, g 0 l eff , versus the atomic percent doping–length product D p l eff . The peak incident pump power, P pump p k , is the free parameter. The slab dimensions, w = t = 400 μ m , and pump loss efficiency, η p loss = 1 , are assumed.

Fig. 4
Fig. 4

(Color online) (a) Two-dimensional view of slab with dimensions and coating properties. The top and bottom are the TIR surfaces. They have a 250   nm   Al 2 O 3 AR coating that results in a power reflectivity of < 2 % for θ < 50 ° at 940 and 1030   nm . This layer is followed by a 10 μ m layer of Norland 61 fluid and a 100 μ m thick glass piece, which both have an index of 1.56. The two end faces have an AR coating at 940 and 1030   nm . At 940   nm the power reflectivity is < 2 % for 18 ° < θ < 61 ° . At 1030   nm the power reflectivity is < 1 % for 20 ° < θ < 30 ° . (b) End view of the slab with a description of the coating and cladding on the TIR faces.

Fig. 5
Fig. 5

Modeled amplifier small signal logarithmic gain, g 0 l eff versus incident pump power, P pump p k ( W ) . Here we assume a pump loss efficiency, η p loss = 0.9 , γ = 29 ° , A slab = 0.16 mm 2 , σ dyn e = 2.1 × 10 20 cm 2 .

Fig. 6
Fig. 6

(Color online) Schematic of quadruple-pass slab amplifier experiment setup. The optical elements in boxes A, B, and C need to be removed to make a single-pass gain measurement. In this case, the detector is placed at the location of box B. For a double-pass gain measurement, the elements in boxes A and C are not required. The detector is placed at the location of box C for this gain measurement. The abbreviations HR, QWP, HWP, FR, and PBS, stand for high reflector, quarter-wave plate, half-wave plate, Faraday rotator, and polarizing beam splitter, respectively.

Fig. 7
Fig. 7

(Color online) Parasitic-limited logarithmic gain, g 0 l eff , versus pump power, P pump p k ( W ) , is shown. The solid line represents the gain that would be expected from theory using Eq. (12). Here, η p loss = 0.9 is assumed in the model. The dots are experimental measured gain values achieved using the setup shown in Fig. 6. The plotted dot values are derived by using Eq. (7) and calculating ln [ E out / ( η s loss · E in ) ] for measured values of E out and E in and assuming signal loss efficiency, η s l o s s = 1 . The inset shows the end view of a slab with parasitic suppression only on the TIR faces (dots show corresponding gain) as well as a slab with claddings on edges of the slab for parasitic suppression (squares show corresponding gain).

Fig. 8
Fig. 8

(Color online) Logarithmic gain, g 0 l eff , versus peak incident pump power, P pump p k ( W ) , for a single-, double-, and quadruple-pass end-pumped slab amplifier with edge claddings for parasitic suppression.

Tables (2)

Tables Icon

Table 1 End-Pumped Yb:YAG Slab Power Amplifier Physical Properties

Tables Icon

Table 2 End-Pumped Slab Power Amplifier Input and Output Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E stored = g 0 F sat V ,
F sat = h ν e σ dyn e ,
F out = η overlap F sat ln { 1 + [ e F in / F s at 1 ] e g 0 l eff } ,
η = η overlap F out F in F sat g 0 l eff ,
F dam ( Δ t ) = F dam ( Δ t ref ) Δ t Δ t ref ,
E out = η s loss F sat A active   cos ( γ ) f ( 2 f ) × ln [ 1 + ( e E in / F sat A active   cos ( γ ) f ( 2 f ) 1 ) e g 0 l eff ] .
E out = η s loss E in e g 0 l eff ,
w T H = w g / 2 ,
f = L s L b = 1 2 w g t   sec ( γ ) ,
L s = 2 w g sin γ ,
L b = 2 t tan   γ .
g 0 l eff = Δ N ( t ) σ dyn e l eff ,
= Δ N ( t ) σ dyn e l doped cos   γ ,
= ( N u ( t ) N l ( t ) ) σ dyn e cos   γ ,
N 2 ( t ) = z = 0 z = l doped n 2 ( z , t ) d z ,
d N 2 ( t ) d t = η p loss I in ( t ) h ν p ( e σ i s p N 2 * ( t ) 1 ) ( R p e σ i s p N 2 * ( t ) + 1 ) N 2 ( t ) τ .
N 2 * ( t ) = ( f a p + f b p ) N 2 ( t ) f a p n 0 l doped ,
I in ( t ) = P pump p k ( t ) A beam pump ,
E stored = g 0 F sat w t l doped ,
= g 0 F sat w t l eff   cos   γ .
E avail = E stored A active A slab .
E extractable = E avail f ( 2 f ) .
E unextracted = E avail ( 1 f ) 2 .
( g 0 ) parasitic = 1 l t  ln ( Π i =1 N R i ) ,
θ crit sin 1 ( n clad n YAG ) .

Metrics