Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry

Not Accessible

Your library or personal account may give you access

Abstract

We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Skeleton extraction and phase interpolation for single ESPI fringe pattern based on the partial differential equations

Fang Zhang, Danyu Wang, Zhitao Xiao, Lei Geng, Jun Wu, Zhenbei Xu, Jiao Sun, Jinjiang Wang, and Jiangtao Xi
Opt. Express 23(23) 29625-29638 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved