Abstract

Wereporton a method for delivering high fluence pulsed 266  nm laser radiation to the target tissue via an optical fiber. The fourth harmonic of a Nd:YAG laser was concentrated using a hollow glass taper and launched into an optical fiber. Fluences of up to 2J/cm2 were routinely output at the tapered optical fiber tip. The maximum fluence generated before failure of the optical fiber was between 3.5 and 8J/cm2. Ablation of ocular tissue was demonstrated using fluences of 1.0 and 0.4J/cm2. The delivery system has the potential for use in intraocular surgicalprocedures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Markolf H. Niemz, 2002).
  2. R. W. Waynant, ed., Lasers in Medicine (CRC, 2002).
  3. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
    [CrossRef] [PubMed]
  4. S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
    [CrossRef] [PubMed]
  5. P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
    [PubMed]
  6. S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
    [PubMed]
  7. D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).
  8. I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).
  9. G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).
  10. M. Vogel and K. Lauritzen, "Selective excimer laser ablation of the trabecular meshwork. Clinical results," Ophthalmologe 94, 665-667 (1997).
    [CrossRef] [PubMed]
  11. F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).
  12. E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).
  13. M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
    [PubMed]
  14. D. E. Williamson, "Cone channel condenser optics," J. Opt. Soc. Am. 42, 712-715 (1952).
    [CrossRef]
  15. D. G. Burkhard, G. L. Strobel, and D. L. Shealy, "Solar concentrating properties of truncated hexagonal, pyramidal and circular cones," Appl. Opt. 17, 2431-2449 (1978).
    [CrossRef] [PubMed]
  16. H. Schmidt-Kloiber and H. Schoeffmann, "Metallic hollow cones as light concentrators," Appl. Opt. 25, 252-257 (1986).
    [CrossRef] [PubMed]
  17. I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
    [CrossRef]
  18. R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).
  19. I. K. Ilev and R. W. Waynant, "Uncoated hollow taper as a simple optical funnel for laser delivery," Rev. Sci. Instrum. 70, 3840-3843 (1999).
    [CrossRef]
  20. I. K. Ilev and R. W. Waynant, "Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling," Appl. Phys. Lett. 74, 2921-2923 (1999).
    [CrossRef]
  21. A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).
  22. P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
    [CrossRef]
  23. D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
    [CrossRef] [PubMed]
  24. G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].
  25. R. E. Setchell, "Optimized fiber delivery system for Q-switched Nd:YAG lasers," in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 2966, 608-619 (1997).
    [CrossRef]
  26. N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
    [CrossRef]
  27. D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
    [CrossRef]
  28. R. E. Setchell, "Laser injection optics for high-intensity transmission in multimode fibers," in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 74-84 (2000).
    [CrossRef]

2006 (1)

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

2004 (1)

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

2003 (3)

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

2002 (2)

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

2000 (2)

R. E. Setchell, "Laser injection optics for high-intensity transmission in multimode fibers," in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 74-84 (2000).
[CrossRef]

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

1999 (3)

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Uncoated hollow taper as a simple optical funnel for laser delivery," Rev. Sci. Instrum. 70, 3840-3843 (1999).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling," Appl. Phys. Lett. 74, 2921-2923 (1999).
[CrossRef]

1997 (3)

R. E. Setchell, "Optimized fiber delivery system for Q-switched Nd:YAG lasers," in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 2966, 608-619 (1997).
[CrossRef]

M. Vogel and K. Lauritzen, "Selective excimer laser ablation of the trabecular meshwork. Clinical results," Ophthalmologe 94, 665-667 (1997).
[CrossRef] [PubMed]

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

1995 (1)

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

1994 (2)

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).

1992 (1)

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

1991 (1)

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

1983 (1)

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

1978 (1)

1952 (1)

Awh, C. C.

E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).

Ballintine, E. J.

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

Bernal, M. T.

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

Bindewald, A.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

Bonaguidi, M. A.

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

Bonner, R. F.

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

Borirakchanyavat, S.

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Brazitikos, P. D.

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

Burkhard, D. G.

Chamberlain, G. E.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

Cringle, S. J.

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

D'Amico, D. J.

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

Day, G. W.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

de Juan, E.

E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).

Dietz, H.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Ediger, M. N.

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

Entwistle, J. D.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Fish, G.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

Franzen, D. L.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

Gallawa, R. L.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

Galler, E. L.

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Gannot, I.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

Greated, C. A.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Gruen, D. M.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Hand, D. P.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Hemo, I.

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

Hillrichs, G.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Holz, F. G.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

Ilev, I. K.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Uncoated hollow taper as a simple optical funnel for laser delivery," Rev. Sci. Instrum. 70, 3840-3843 (1999).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling," Appl. Phys. Lett. 74, 2921-2923 (1999).
[CrossRef]

Jennings, R. J.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

Jones, J. D. C.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Kamimura, T.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Kim, E. M.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

Klein, K. F.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Kliman, G. H.

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Kuhn, A.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Kuzuu, N.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Lauritzen, K.

M. Vogel and K. Lauritzen, "Selective excimer laser ablation of the trabecular meshwork. Clinical results," Ophthalmologe 94, 665-667 (1997).
[CrossRef] [PubMed]

Lewis, A.

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

Maier, R. R.

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Margolis, T. I.

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Matsuura, Y.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Meyers, S. M.

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

Miller, J.

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

Mitra, K.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

Miyagi, M.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Namba, Y.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Niemz, M. H.

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Markolf H. Niemz, 2002).

Ochi, K.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Palanker, D.

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

Pe'er, J.

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

Pellin, M. J.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Peters, M. A.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Puliafito, C. A.

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Rodrigues, M. M.

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

Rutting, M.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Schallen, E. H.

E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).

Schastak, S.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Schmidt-Kloiber, H.

Schoeffmann, H.

Schutt, F.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

Setchell, R. E.

R. E. Setchell, "Laser injection optics for high-intensity transmission in multimode fibers," in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 74-84 (2000).
[CrossRef]

R. E. Setchell, "Optimized fiber delivery system for Q-switched Nd:YAG lasers," in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 2966, 608-619 (1997).
[CrossRef]

Shealy, D. L.

Specht, H.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

Strobel, G. L.

Su, E. N.

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

Tsuboi, Y.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Turovets, I.

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

Venugopalan, V.

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Vogel, M.

M. Vogel and K. Lauritzen, "Selective excimer laser ablation of the trabecular meshwork. Clinical results," Ophthalmologe 94, 665-667 (1997).
[CrossRef] [PubMed]

Walsh, A. W.

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Uncoated hollow taper as a simple optical funnel for laser delivery," Rev. Sci. Instrum. 70, 3840-3843 (1999).
[CrossRef]

I. K. Ilev and R. W. Waynant, "Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling," Appl. Phys. Lett. 74, 2921-2923 (1999).
[CrossRef]

R. W. Waynant, ed., Lasers in Medicine (CRC, 2002).

Wiedemann, P.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Williams, G. A.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Williamson, D. E.

Yoshida, H.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Yoshida, K.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Young, C. E.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Young, M.

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

Yu, D. Y.

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

Yu, P. K.

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

Zauberman, H.

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

Am. J. Ophthalmol. (1)

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, "Endoexcimer laser intraocular ablative photodecomposition," Am. J. Ophthalmol. 99, 483-484 (1985).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. K. Ilev and R. W. Waynant, "Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling," Appl. Phys. Lett. 74, 2921-2923 (1999).
[CrossRef]

Arch. Ophthalmol. (1)

S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, and E. L. Galler, "Holmium-YAG laser surgery on experimental vitreous membranes," Arch. Ophthalmol. 109, 1605-1609 (1991).
[CrossRef] [PubMed]

Biomed. Tech. (1)

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, "Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration," Biomed. Tech. 48, 82-85 (2003).

Chem. Rev. (1)

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

I. K. Ilev, R. W. Waynant, M. N. Ediger, and M. A. Bonaguidi, "Ultraviolet laser delivery using an uncoated hollow taper," IEEE J. Quantum Electron. 36, 944-948 (2000).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (4)

A. Lewis, D. Palanker, I. Hemo, J. Pe'er, and H. Zauberman, "Microsurgery of the retina with a needle-guided 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 33, 2377-2381 (1992).

P. K. Yu, J. Miller, S. J. Cringle, and D. Y. Yu, "Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe," Invest. Ophthalmol. Visual Sci. 47, 1587-1593 (2006).
[CrossRef]

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, "Vitreoretinal ablation with the 193-nm excimer laser in fluid media," Invest. Ophthalmol. Visual Sci. 35, 3835-3840 (1994).

I. Hemo, D. Palanker, I. Turovets, A. Lewis, and H. Zauberman, "Vitreoretinal surgery assisted by the 193-nm excimer laser," Invest. Ophthalmol. Visual Sci. 38, 1825-1829 (1997).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. Part 1 (1)

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, "Laser-induced bulk damage of various types of silica glasses at 266 nm," Jpn. J. Appl. Phys. Part 1 43, 7174-7175 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

D. P. Hand, J. D. Entwistle, R. R. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999).
[CrossRef]

Ophthalmologe (1)

M. Vogel and K. Lauritzen, "Selective excimer laser ablation of the trabecular meshwork. Clinical results," Ophthalmologe 94, 665-667 (1997).
[CrossRef] [PubMed]

Ophthalmology (2)

P. D. Brazitikos, D. J. D'Amico, M. T. Bernal, and A. W. Walsh, "Erbium:YAG laser surgery of the vitreous and retina," Ophthalmology 102, 278-290 (1995).
[PubMed]

S. M. Meyers, R. F. Bonner, M. M. Rodrigues, and E. J. Ballintine, "Phototransection of vitreal membranes with the carbon dioxide laser in rabbits," Ophthalmology 90, 563-568 (1983).
[PubMed]

Proc. SPIE (2)

R. E. Setchell, "Laser injection optics for high-intensity transmission in multimode fibers," in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 74-84 (2000).
[CrossRef]

R. E. Setchell, "Optimized fiber delivery system for Q-switched Nd:YAG lasers," in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 2966, 608-619 (1997).
[CrossRef]

Prog. Retin. Eye Res. (1)

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, "Isolated preparations of ocular vasculature and their applications in ophthalmic research," Prog. Retin. Eye Res. 22, 135-169 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

I. K. Ilev and R. W. Waynant, "Uncoated hollow taper as a simple optical funnel for laser delivery," Rev. Sci. Instrum. 70, 3840-3843 (1999).
[CrossRef]

Other (6)

G. E. Chamberlain, G. W. Day, D. L. Franzen, R. L. Gallawa, E. M. Kim, and M. Young, Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns, NBS-SP-637 [Natl. Bur. Stand. (U.S.), 1983].

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, and R. J. Jennings, "Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 121-128 (2002).

E. H. Schallen, C. C. Awh, and E. Jr., de Juan, "Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm," Lasers Surg. Med. 15, 99-106 (1994).

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Markolf H. Niemz, 2002).

R. W. Waynant, ed., Lasers in Medicine (CRC, 2002).

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, "Flexible beam guiding in a microsurgical UV laser scalpel," in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 199-206 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the optical bench.

Fig. 2
Fig. 2

(a), (b) Beam profile (a) input and (b) output from a hollow uncoated glass taper created using the ray tracing software tracepro. The 3   mm diameter input beam has a top hat profile with a divergence of 0 .6   mrad . The hollow taper is 57   mm long with an input diameter of 3   mm and an output diameter of 1   mm giving a taper angle of 1.0°. Both the irradiance map (left) and the beam profile (right) correspond to the beam profile 1   mm beyond the taper tip, and the scale matches the output taper diameter of 1   mm . (c), (d) Beam profile (c) input and (d) output from a hollow uncoated glass taper created using the ray tracing software tracepro. The 3 mm diameter input beam has a top hat profile with a divergence of 0 .6   mrad . A 50% absorbing cross-shaped screen was placed directly before the taper input. The hollow taper is 57   mm long with an input diameter of 3   mm and an output diameter of 1   mm giving a taper angle of 1.0°. Both the irradiance map (left) and the beam profile (right) correspond to the beam profile 1   mm beyond the taper tip, and the scale matches the output taper diameter of 1   mm .

Fig. 3
Fig. 3

Variation of the output beam profile with the ratio of input to output diameter for model hollow glass tapers, these ratios were 2:1, 3:1, and 6:1. The output diameter was fixed at 1   mm , and the taper half-angle was fixed at 1°; therefore the input diameter and taper lengths were as follows: (a) and (b) 2:1 taper, input diameter = 2   mm , taper length = 28   mm ; (c) 3:1 taper, input diameter = 3 mm, taper length = 57   mm ; (d) 6:1 taper, input diameter = 6   mm , taper length = 142   mm . Beam profiles are given at both (a) 1   mm and (b) 3   mm beyond the taper tip for the 2:1 taper and at 1   mm beyond the taper tip for the (c) 3:1 and (d) 6:1 tapers. The scale of both the irradiance map and the beam profile match the output taper diameter of 1   mm .

Fig. 4
Fig. 4

Beam profile output from models of two of the actual hollow glass tapers used in this study. The input beam diameter matches the taper diameter and has a top hat profile with a divergence of 0.6   mrad . The average taper half-angle is quoted in the figure. This angle decreased along the length of the taper and the software model accounted for this variation. The half-angle for taper 2 varied from 1.18° at the input end to 0.24° at the output end, and for taper 5 the corresponding half-angles are 1.27° and 0.17°. Both the irradiance map (left) and the beam profile (right) correspond to the beam profile 1   mm beyond the taper tip, and the scale matches the output taper diameters of 1.08 and 0.31   mm , respectively.

Fig. 5
Fig. 5

Measured horizontal (X) and vertical (Y) beam profiles 1 mm beyond the taper tip. The beam was sampled using a 15 μm pinhole, the position of this pinhole was controlled using an xy micropositioner. The intensity at each position was measured using a linear detector. (a) Taper 2, (b) Taper 5.

Fig. 6
Fig. 6

Lesions (thick arrows) generated using pulses of 266   nm radiation output from the tapered tip of an optical fiber, the core diameter of the tapered optical fiber tip was 95 μ m for lesion (a) and 220 μ m for lesion (b). For both lesions, the pulse duration was 4 6   ns , with a repetition rate of 10   Hz , and the fiber tip was lightly touching the tissue before the lesion was generated. (a) Retinal lesion generated using three pulses with fluence = 1.0 J / cm 2 . GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer. (b) Choroidal lesion generated using 50 pulses with fluence = 0.4 J / cm 2 . Thin arrows point to Bruch's membrane (BM). CC = choriocapillaris, BV = blood vessel, PC = pigmented cells. Scale bar 50 μ m .

Tables (4)

Tables Icon

Table 1 Details for the Six Custom Pulled Hollow Tapers a

Tables Icon

Table 2 Comparison of a Launch Device versus the Maximum Pulse Energy and Maximum Fluence Output from 100 mm Lengths of a 600 μm Core Optical Fiber a

Tables Icon

Table 3 Comparison of a Launch Device versus Maximum Pulse Energy and Maximum Fluence Output from 100 mm Lengths of 200 μm Core Optical Fiber a

Tables Icon

Table 4 Maximum Fluence Transmitted through Narrowed Optical Fiber Cores a

Metrics