Abstract

We consider a feature selection method to detect skin tumors on chicken carcasses using hyperspectral (HS) reflectance data. Detection of chicken tumors is difficult because the tumors vary in size and shape; some tumors are small, early-stage tumor spots. We make use of the fact that a chicken skin tumor consists of a lesion region surrounded by a region of thickened skin and that the spectral responses of the lesion and the thickened-skin regions of tumors are considerably different and train our feature selection algorithm to separately detect lesion regions and thickened-skin regions; we then fuse the two HS detection results to reduce false alarms. To the best of our knowledge, these techniques are new. Our forward selection and modified branch and bound algorithm is used to select a small number of λ spectral features that are useful for discrimination. Initial results show that our method offers promise for a good tumor detection rate and a low false alarm rate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription