Abstract

Wereportan ultra-widely tunable long-period holey-fiber grating, which combines the wide-range single-mode behavior and transverse strain sensitivity of the holey fibers with the advantages of mechanically induced long-period fiber gratings. We obtain a versatile widely tunable long-period holey-fiber grating with attractive transmission spectral characteristics for optical communications, fiber-based amplifiers, and lasers. The mechanically induced long-period holey-fiber grating shows a continuous tuning range over 500  nm, more than 12  dB depth notches with less than 0.75  dB out-of-band losses, and bandwidth control from 10 to 40  nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. E. M. Dianov, D. S. Starodubov, S. A. Vasiliev, A. A. Frolov, and O. I. Medvedkov, "Refractive index gratings written by near-UV radiation," Opt. Lett. 22, 221-223 (1997).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  5. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-long period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  6. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
    [CrossRef]
  7. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
    [CrossRef]
  8. I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
    [CrossRef]
  9. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
    [CrossRef] [PubMed]
  10. K. Chen, Q. Sheng, C. Ge, X. Dong, J. Han, and S. Chen, "Several mechanically-induced long-period gratings by a grooved plate," Chin. Opt. Lett. 1, 444-446 (2003).
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber grating fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
    [CrossRef] [PubMed]
  12. I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
    [CrossRef]
  13. Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
    [CrossRef]
  14. J. H. Iim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
    [CrossRef]
  15. D. Lee, Y. Jung, Y. S. Jeong, and K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Highly polarization-dependence periodic coupling mechanically induced long period grating over air-silica fiber," Opt. Lett. 31, 296-298 (2006).
    [CrossRef] [PubMed]
  16. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]
  17. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25, 710-712 (2000).
    [CrossRef]
  18. G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
    [CrossRef]
  19. T. Yokouchi, Y. Suzaki, K. Nakagawa, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, and S. Ejima, "Thermal tuning of mechanically induced long-period fiber grating," Appl. Opt. 44, 5024-5028 (2005).
    [CrossRef] [PubMed]
  20. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
    [CrossRef]
  21. G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, "Tuning, attenuating, and switching by controlled long-period fiber gratings," Opt. Lett. 26, 61-63 (2001).
    [CrossRef]
  22. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Winderler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  23. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  24. R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
    [CrossRef]

2006 (4)

2005 (1)

2004 (2)

2003 (5)

K. Chen, Q. Sheng, C. Ge, X. Dong, J. Han, and S. Chen, "Several mechanically-induced long-period gratings by a grooved plate," Chin. Opt. Lett. 1, 444-446 (2003).

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

2002 (3)

G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-long period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
[CrossRef]

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

2001 (2)

2000 (1)

1999 (2)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

1997 (2)

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Anemogiannis, E.

Atkin, D. M.

Baek, J.-G.

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

Bathia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Birks, T. A.

Braiwish, M. I.

Chen, K.

Chen, S.

Chung, Y.

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Davis, D. D.

Dianov, E. M.

Digonnet, M. J. F.

Dong, X.

Eggleton, B. J.

Ejima, S.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Fernandez, J. R. A.

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Février, S.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Frolov, A. A.

Gaylord, T. K.

Ge, C.

Glytsis, E. N.

Hale, A.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Winderler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Han, J.

Han, Y.-G.

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Humbert, G.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Iim, J. H.

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

Jang, H. S.

Jeong, Y. S.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Jung, Y.

Kakarantzas, G.

Kang, J. U.

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Kerbage, C.

Kim, C.-S.

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Kim, J. C.

Kimura, M.

Kimura, S.

Kino, G. S.

Kirchhof, J.

Knight, J. C.

Kobelke, J.

Kuhlmey, B. T.

Kwon, H.

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

Kwon, H.-W.

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

Lee, B. H.

Lee, D.

Lee, K. S.

Lee, N.

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

Lee, N.-K.

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lim, J. H.

Mägi, E. C.

Malki, A.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Marques, P. V. S.

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Medvedkov, O. I.

Mizutani, Y.

Moore, E. D.

Nakagawa, K.

Oh, K.

Pagnoux, D.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Peak, U.

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Rego, G.

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Roy, P.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Russell, P. St. J.

Salgado, H. M.

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Santos, J. L.

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Savin, S.

Schuster, K.

Shaw, H. J.

Sheng, Q.

Sinha, R. K.

R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Sohn, I.-B.

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

Song, J.-W.

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

Spalter, S.

St. Russell, P.

Starodubov, D. S.

Steinvurzel, P.

Strasser, T. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Suzaki, Y.

Van Wiggeren, G. D.

Varshney, S. K.

R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Vasiliev, S. A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Winderler, R. S.

Yamauchi, M.

Yokouchi, T.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Lett. (4)

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long period gratings in Ge-free air-silica microstructured fibers," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

I.-B. Sohn, J.-G. Baek, N. Lee, H. Kwon, and J.-W. Song, "Gain flattened and improved EDFA using microbending long period fibre gratings," Electron. Lett. 38, 1324-1325 (2002).
[CrossRef]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fibre gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y.-G. Han, C.-S. Kim, J. U. Kang, U. Peak, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings and band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Opt. Commun. (1)

G. Rego, J. R. A. Fernandez, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fiber gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Opt. Eng. (1)

I.-B. Sohn, N.-K. Lee, H.-W. Kwon, and J.-W. Song, "Tunable gain-flattening filter using microbending long period fiber gratings," Opt. Eng. 41, 1465-1466 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (11)

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, "Tuning, attenuating, and switching by controlled long-period fiber gratings," Opt. Lett. 26, 61-63 (2001).
[CrossRef]

E. M. Dianov, D. S. Starodubov, S. A. Vasiliev, A. A. Frolov, and O. I. Medvedkov, "Refractive index gratings written by near-UV radiation," Opt. Lett. 22, 221-223 (1997).
[CrossRef] [PubMed]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-long period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
[CrossRef]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber grating fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

J. H. Iim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
[CrossRef]

D. Lee, Y. Jung, Y. S. Jeong, and K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Highly polarization-dependence periodic coupling mechanically induced long period grating over air-silica fiber," Opt. Lett. 31, 296-298 (2006).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
[CrossRef] [PubMed]

S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25, 710-712 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of experimental mechanically induced LPHFG setup. (b) Cross-sectional image of the holey fiber.

Fig. 2
Fig. 2

(a) Transmitted spectrum of the LPHFG for different periods. (b) Central peak shift with period variation.

Fig. 3
Fig. 3

(a) Transmitted spectrum notch ( N = 20 , 30, 40, 60 and Λ = 0.514   mm ). (b) Bandwidth notch ( λ = 1288   nm and Λ = 0.514   mm ).

Metrics