Abstract

We demonstrate a three-dimensional direct-write lithography system capable of writing deeply buried, localized index structures into diffusion-mediated photopolymer. The system is similar to that used for femtosecond writing in glass, but has a number of advantages including greater flexibility in the writing media and the ability to use low power, inexpensive, continuous-wave lasers. This system writes index structures both parallel and perpendicular to the writing beam in different types of photopolymers, providing control over the feature size and shape. We demonstrate that this system can be used to create single-mode waveguides that are deeply embedded in the photopolymer medium.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
    [CrossRef]
  3. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002).
    [CrossRef] [PubMed]
  4. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
    [CrossRef] [PubMed]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  6. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
    [CrossRef] [PubMed]
  7. B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989).
    [CrossRef]
  8. L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999).
    [CrossRef]
  9. R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).
  10. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).
  11. R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
    [CrossRef]
  12. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
    [CrossRef]
  13. A. K. Das, B. S. Chaudhari, and S. Ghosh, "Characteristics of polymeric optical passive single-mode waveguiding devices fabricated by an argon-ion laser," Appl. Opt. 37, 6779-6786 (1998).
    [CrossRef]
  14. S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
    [CrossRef]
  15. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  16. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  17. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
    [CrossRef]
  18. M. Yonemura, A. Kawasaki, S. Kato, and M. Kagami, "Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication," Opt. Lett. 30, 2206-2208 (2005).
    [CrossRef] [PubMed]
  19. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef] [PubMed]
  20. R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).
  21. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
    [CrossRef]
  22. J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969).
    [CrossRef] [PubMed]
  23. InPhase Technologies, Tapestry Media, www.inphase-technologies.com.
  24. Aprilis, Inc., HMC media, www.aprilisinc.com/datastorage_media.htm.
  25. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum Press, 1995).
  26. M. Pluta, Advanced Light Microscopy, Vol. 2, Specialized Methods (Elsevier, 1989).

2005

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

M. Yonemura, A. Kawasaki, S. Kato, and M. Kagami, "Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication," Opt. Lett. 30, 2206-2208 (2005).
[CrossRef] [PubMed]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
[CrossRef] [PubMed]

2003

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

2002

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002).
[CrossRef] [PubMed]

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

1999

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999).
[CrossRef]

1998

1997

1996

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

1989

R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
[CrossRef]

B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989).
[CrossRef]

1969

J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969).
[CrossRef] [PubMed]

Ams, M.

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Berchtold, K. A.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
[CrossRef]

Booth, B. L.

B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989).
[CrossRef]

Bowman, C. N.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Chaudhari, B. S.

Chen, A.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Chichkov, B. N.

Chin, S. L.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Chuyanov, V.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Crégut, O.

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Daiber, A. J.

Dalton, L. R.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Das, A. K.

Davis, K. M.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Dhal, P. K.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Dhar, L.

L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999).
[CrossRef]

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Dorkenoo, K.

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Ehrich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Fujimoto, J. G.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

Garner, S.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Ghosh, S.

Gillot, F.

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Grabowski, M. W.

R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).

Hale, A.

Hartman, D. H.

R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Hesselink, L.

Hill, A.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Hirao, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Horner, M. G.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Ihas, B.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Ingwall, R. T.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Ippen, E. P.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

Kagami, M.

Kato, S.

Katz, H. E.

Kawasaki, A.

Kawata, S.

Kolb, E. S.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Kowalevicz, A. M.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

Krchnavek, R. R.

R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lalk, G. R.

R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lee, S.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Li, Y. S.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Lovestead, T. M.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
[CrossRef]

Mager, L.

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

Maruo, S.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
[CrossRef] [PubMed]

R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).

Meier, R. W.

J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969).
[CrossRef] [PubMed]

Michaels, D.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Minns, R. A.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Minoshima, K.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

Miura, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Nadeau, M.-C.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Nakamura, O.

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002).
[CrossRef] [PubMed]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum Press, 1995).

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Petit, S.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy, Vol. 2, Specialized Methods (Elsevier, 1989).

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Robertson, T. L.

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Schild, H. G.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Schilling, F. C.

Schilling, L.

Schnoes, M.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Schnoes, M. G.

Schomberger, G.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Scott, T.

R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).

Setthachayanon, S.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Shacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Sharma, V.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

Slagle, T.

Sochava, S. L.

Spence, D. J.

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

Steier, W. H.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Sugimoto, N.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Sullivan, A. C.

R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Tünnermann, A.

Urbach, J. C.

J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969).
[CrossRef] [PubMed]

Vallée, R.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

Waldman, R. A.

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002).
[CrossRef] [PubMed]

Wilson, W. L.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

Withford, M. J.

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

Wu, X.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Yacoubian, A.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Yonemura, M.

Appl. Opt.

J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

IEEE J. Quantum Electron.

S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999).
[CrossRef]

J. Appl. Phys.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003).
[CrossRef]

J. Lightwave Technol.

B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989).
[CrossRef]

J. Appl. Phys.

R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989).
[CrossRef]

J. Lightwave Technol.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Macromolecules

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002).
[CrossRef]

Nature

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Opt. Express

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
[CrossRef] [PubMed]

Opt. Lett.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Opt. Lett.

Other

R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).

R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).

InPhase Technologies, Tapestry Media, www.inphase-technologies.com.

Aprilis, Inc., HMC media, www.aprilisinc.com/datastorage_media.htm.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum Press, 1995).

M. Pluta, Advanced Light Microscopy, Vol. 2, Specialized Methods (Elsevier, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Direct-write lithography writing into photopolymer for (a) perpendicular and (b) parallel writing.

Fig. 2
Fig. 2

Normalized refractive index change created in photopolymer by translating the material perpendicular to an incident Gaussian beam. From top to bottom, α = { 0.5 , 0.75 , 1.0 , 2.0 } . Refractive index structure confinement in z is strongly dependent on the value of α, and α = 0.5 gives no confinement of the index structure along the z axis.

Fig. 3
Fig. 3

(Color online) Cross sections of refractive index change created in the photopolymer by translating the material parallel to the propagation of the Gaussian writing beam for different values of α. There is no radial confinement for the case in which α = 0.5 . The size of the index structure is strongly dependent on α, as it was for the perpendicular writing.

Fig. 4
Fig. 4

(Color online) Optical layout for the read∕write lithography system, consisting of the 532 nm writing beam and the 633 nm confocal microscope. The photopolymer is moved through the focus by high precision 3D stages.

Fig. 5
Fig. 5

Differential interference contrast (DIC) images of index structures written perpendicular to the writing beam. (a) Top view of a series of index lines written 35 μm apart. (b) Side view of a cross section of those lines in a 20 μm thick microtomed slice. Both views are imaged using a 0.3 N.A., 10 × objective.

Fig. 6
Fig. 6

DIC images of index structures written in (a) radical initiated and (b) cationic initiated photopolymer media. The samples are both 20 μm thick and are imaged using a 0.5 N.A., 20 × objective.

Fig. 7
Fig. 7

DIC images of index structures written parallel to the writing beam. This sample is 10 μm thick and is imaged using a 0.5 N.A., 20 × objective.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ n ( x , y , z ) d / v d / v I α ( x + v t , y , z ) d t ,
I ( x , y , z ) = 2 P π w o 2 1 1 + ( z z o ) 2 exp { 2 x 2 + y 2 w o 2 [ 1 + ( z z o ) 2 ] } ,
δ n ( y , z ) ( 2 π ) α P α w 0 1 2 α v α [ 1 + ( z z 0 ) 2 ] α × exp [ 2 α ( y w 0 ) 2 1 + ( z z 0 ) 2 ] .
δ n ( x , y , z ) d / v d / v I 0 α ( x , y , z + v t ) d t .
N A = n c o re 2 n c l a d d i ng 2 ,

Metrics