Abstract

Glow discharge plasma, derived from direct-current gas breakdown, is investigated in order to realize an inexpensive terahertz (THz) room-temperature detector. Preliminary results for THz radiation show that glow discharge indicator lamps as room-temperature detectors yield good responsivity and noise-equivalent power. Development of a focal plane array (FPA) using such devices as detectors is advantageous since the cost of a glow discharge detector is approximately $0.2$0.5 per lamp, and the FPA images will be diffraction limited. The detection mechanism of the glow discharge detector is found to be the enhanced diffusion current, which causes the glow discharge detector bias current to decrease when exposed to THz radiation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. D. MacDonald, Microwave Breakdown in Gases (Wiley, 1966).
  2. N. H. Farhat, "A plasma microwave power density detector," Proc. IEEE 52, 1053-1054 (1964).
    [CrossRef]
  3. N. S. Kopeika, "Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties," IEEE Trans. Plasma Sci. PS-6, 139-157 (1978).
    [CrossRef]
  4. D. C. McCain, "A plasma video detector," IEEE Trans. Microwave Theory Tech. MMT-18, 66-67 (1970).
  5. N. S. Kopeika and N. H. Farhat, "Video detection of millimeter waves with glow discharge tubes: Part I--Physical description; Part II--Experimental results," IEEE Trans. Electron Devices ED-22, 534-548 (1975).
    [CrossRef]
  6. N. S. Kopeika, "on the mechanism of glow discharge detection of microwave and millimeter wave radiation," Proc. IEEE 63, 981-982 (1975).
    [CrossRef]
  7. N. H. Farhat and N. S. Kopeika, "A low-cost millimeter-wave glow-discharge detector," Proc. IEEE 60, 759-760 (1972).
    [CrossRef]
  8. N. S. Kopeika, "Noise spectra of commercial indicator glow discharge detectors," Int. J. Electron. 39, 209-218 (1975).
    [CrossRef]
  9. T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, "GaAs devices and circuits for terahertz applications," Infrared Phys. Technol. 40, 175-189 (1999).
  10. G. Kozlov and A. Volkov, Millimeter and Submillimeter Wave Spectroscopy of Solids, Vol. 47 of Topics in Applied Physics, G. Gruner, ed. (Springer-Verlag, 1998).
  11. J. A. Murphy and R. Padman, "Phase centers of horn antennas using Gaussian mode analysis," IEEE Trans. Antennas Propag. 38, 1306-1310 (1990).
    [CrossRef]
  12. P. F. Goldsmith, "Quasi optical technique at millimeter and sub-millimeter wavelengths," in Infrared and Millimeter Waves, K. Button, ed. (Academic, 1982), Vol. 6, Chap. 5, pp. 277-343.
  13. N. S. kopeika, "The influence of external electrodes in millimeter wave video detection with glow discharge plasmas," in 1974 IEEE National Telecommunications Conference (IEEE, 1974), pp. 1069-1073.

1990

J. A. Murphy and R. Padman, "Phase centers of horn antennas using Gaussian mode analysis," IEEE Trans. Antennas Propag. 38, 1306-1310 (1990).
[CrossRef]

1978

N. S. Kopeika, "Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties," IEEE Trans. Plasma Sci. PS-6, 139-157 (1978).
[CrossRef]

1975

N. S. Kopeika and N. H. Farhat, "Video detection of millimeter waves with glow discharge tubes: Part I--Physical description; Part II--Experimental results," IEEE Trans. Electron Devices ED-22, 534-548 (1975).
[CrossRef]

N. S. Kopeika, "on the mechanism of glow discharge detection of microwave and millimeter wave radiation," Proc. IEEE 63, 981-982 (1975).
[CrossRef]

N. S. Kopeika, "Noise spectra of commercial indicator glow discharge detectors," Int. J. Electron. 39, 209-218 (1975).
[CrossRef]

1972

N. H. Farhat and N. S. Kopeika, "A low-cost millimeter-wave glow-discharge detector," Proc. IEEE 60, 759-760 (1972).
[CrossRef]

1970

D. C. McCain, "A plasma video detector," IEEE Trans. Microwave Theory Tech. MMT-18, 66-67 (1970).

1964

N. H. Farhat, "A plasma microwave power density detector," Proc. IEEE 52, 1053-1054 (1964).
[CrossRef]

IEEE Trans. Antennas Propag.

J. A. Murphy and R. Padman, "Phase centers of horn antennas using Gaussian mode analysis," IEEE Trans. Antennas Propag. 38, 1306-1310 (1990).
[CrossRef]

IEEE Trans. Electron Devices

N. S. Kopeika and N. H. Farhat, "Video detection of millimeter waves with glow discharge tubes: Part I--Physical description; Part II--Experimental results," IEEE Trans. Electron Devices ED-22, 534-548 (1975).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

D. C. McCain, "A plasma video detector," IEEE Trans. Microwave Theory Tech. MMT-18, 66-67 (1970).

IEEE Trans. Plasma Sci.

N. S. Kopeika, "Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties," IEEE Trans. Plasma Sci. PS-6, 139-157 (1978).
[CrossRef]

Int. J. Electron.

N. S. Kopeika, "Noise spectra of commercial indicator glow discharge detectors," Int. J. Electron. 39, 209-218 (1975).
[CrossRef]

Proc. IEEE

N. S. Kopeika, "on the mechanism of glow discharge detection of microwave and millimeter wave radiation," Proc. IEEE 63, 981-982 (1975).
[CrossRef]

N. H. Farhat and N. S. Kopeika, "A low-cost millimeter-wave glow-discharge detector," Proc. IEEE 60, 759-760 (1972).
[CrossRef]

N. H. Farhat, "A plasma microwave power density detector," Proc. IEEE 52, 1053-1054 (1964).
[CrossRef]

Other

A. D. MacDonald, Microwave Breakdown in Gases (Wiley, 1966).

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, "GaAs devices and circuits for terahertz applications," Infrared Phys. Technol. 40, 175-189 (1999).

G. Kozlov and A. Volkov, Millimeter and Submillimeter Wave Spectroscopy of Solids, Vol. 47 of Topics in Applied Physics, G. Gruner, ed. (Springer-Verlag, 1998).

P. F. Goldsmith, "Quasi optical technique at millimeter and sub-millimeter wavelengths," in Infrared and Millimeter Waves, K. Button, ed. (Academic, 1982), Vol. 6, Chap. 5, pp. 277-343.

N. S. kopeika, "The influence of external electrodes in millimeter wave video detection with glow discharge plasmas," in 1974 IEEE National Telecommunications Conference (IEEE, 1974), pp. 1069-1073.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Description of the GDD N523 (measurements are in mm). (b) Basic experimental setup for evaluating the GDD performance as a THz detector.

Fig. 2
Fig. 2

GDD signal as obtained on the scope in arbitrary units as a function of time ( 500 μ s / div ) . The THz radiation was modulated with a 1   kHz square wave.

Fig. 3
Fig. 3

Response of the GDD as function of GDD dc bias current. The signal is in arbitrary units (THz frequency is 100   GHz ). We repeated the responsivity experiment for a THz frequency of 250   GHz .

Fig. 4
Fig. 4

Response of the GDD as a function of the GDD dc current. The output signal is in arbitrary units (the THz frequency is 250   GHz , and the optical chopper modulation is 700   Hz ).

Fig. 5
Fig. 5

GDD detected signal and modulation signal of the THz radiation on the same time axis.

Fig. 6
Fig. 6

Experimental setup for investigating the GDD detection mechanism.

Fig. 7
Fig. 7

GDD detected signal and modulation signal of the THz radiation on the same time axis for the chopper experimental setup.

Fig. 8
Fig. 8

Responsivity curve of GDD N523 for a dc current of 9.5   mA . The THz frequency is 100   GHz modulated by 1   kHz , and the bandwidth of the amplifier is 100 10,000   Hz . The amplifier gain is 30   dB .

Fig. 9
Fig. 9

Noise spectrum of the GDD detection system as was measured by a spectrum analyzer where the BW of the amplifier is 10   Hz to 1   MHz . The amplifier gain is 30   dB .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ I d = ( Δ ν i ) n + ν i ( Δ n ) ( Δ D ) 2 n D 2 ( Δ n ) ,
N V n 2 = ( R × NEP ) 2 × BW ,

Metrics