Abstract

An experimental arrangement is described where a Babinet–Soleil compensator is inserted into the path of one of the three beams used for noncoplanar beam interference lithography. This birefringent element can change the phase of the beam so that either a positive two-dimensional pattern or an inverselike structure is generated in a photoresist without disturbing the mechanical geometry of the setup. Simulations are presented that confirm the validity of this approach. Large defect-free sample areas (>1cm2) with submicrometer periodic patterns were obtained by expanding the laser beams used in the lithography experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. R. J. Brueck, "Optical and interferometric lithography-nanotechnology enablers," Proc. IEEE 93, 1704-1721 (2005).
    [CrossRef]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  3. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
    [CrossRef]
  4. A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, "Direct fabrication of two-dimensional titania arrays using interference photolithography," Appl. Phys. Lett. 79, 3332-3334 (2001).
    [CrossRef]
  5. A. Austin and F. T. Stone, "Fabrication of thin periodic structure in photoresist: a model," Appl. Opt. 15, 1071-1071 (1976).
    [CrossRef] [PubMed]
  6. C. J. M. van Rijn, "Laser interference as a lithographic nanopatterning tool," J. Microlithogr. Microfabri. and Microsyst. 5, 011012 (2006).
  7. L. Z. Cai and X. L. Yang, "Observation of fractional Fourier transforms of continuously variable orders with a scale invariant input," Opt. Commun. 201, 319-323 (2002).
    [CrossRef]
  8. L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams," J. Opt. Soc. Am. A 19, 2238-2244 (2002).
    [CrossRef]
  9. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004).
    [CrossRef]
  10. X. L. Yang and L. Z. Cai, "Wave design of the interference of three noncoplanar beams for microfiber fabrication," Opt. Commun. 208, 293-297 (2002).
    [CrossRef]
  11. X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, "Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices," Opt. Commun. 218, 325-332 (2003).
    [CrossRef]
  12. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005).
    [CrossRef]
  13. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, "Methods for fabricating arrays of holes using interference lithography," J. Vac. Sci. Technol. B 15, 2439-2443 (1997).
    [CrossRef]
  14. A. Fernandez and D. W. Phillion, "Effects of phase shifts on four-beam interference patterns," Appl. Opt. 37, 473-478 (1998).
    [CrossRef]
  15. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
    [CrossRef]
  16. A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," Pure Appl. Opt. 1, L3-L6 (1999).
    [CrossRef]
  17. M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, "Two-dimensional photonic band structures," Opt. Commun. 80, 199-204 (1991).
    [CrossRef]
  18. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134-7142 (1996).
    [CrossRef]
  19. C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, "Diffraction element assisted lithography: Pattern control for photonic crystal fabrication," Appl. Phys. Lett. 86, 193110 (2005).
    [CrossRef]
  20. L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of a microfiber bundle by interference of three noncoplanar beams," Opt. Lett. 26, 1858-1860 (2001).
    [CrossRef]
  21. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnetic arrays using interference lithography and a negative resist," J. Vac. Sci. Technol. B 17, 3182-3189 (1999).
    [CrossRef]
  22. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Lights (Princeton U. Press, 1995).

2006 (1)

C. J. M. van Rijn, "Laser interference as a lithographic nanopatterning tool," J. Microlithogr. Microfabri. and Microsyst. 5, 011012 (2006).

2005 (3)

S. R. J. Brueck, "Optical and interferometric lithography-nanotechnology enablers," Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005).
[CrossRef]

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, "Diffraction element assisted lithography: Pattern control for photonic crystal fabrication," Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

2004 (1)

2003 (1)

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, "Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices," Opt. Commun. 218, 325-332 (2003).
[CrossRef]

2002 (4)

L. Z. Cai and X. L. Yang, "Observation of fractional Fourier transforms of continuously variable orders with a scale invariant input," Opt. Commun. 201, 319-323 (2002).
[CrossRef]

X. L. Yang and L. Z. Cai, "Wave design of the interference of three noncoplanar beams for microfiber fabrication," Opt. Commun. 208, 293-297 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams," J. Opt. Soc. Am. A 19, 2238-2244 (2002).
[CrossRef]

2001 (2)

L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of a microfiber bundle by interference of three noncoplanar beams," Opt. Lett. 26, 1858-1860 (2001).
[CrossRef]

A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, "Direct fabrication of two-dimensional titania arrays using interference photolithography," Appl. Phys. Lett. 79, 3332-3334 (2001).
[CrossRef]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

1999 (2)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," Pure Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnetic arrays using interference lithography and a negative resist," J. Vac. Sci. Technol. B 17, 3182-3189 (1999).
[CrossRef]

1998 (1)

1997 (2)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, "Methods for fabricating arrays of holes using interference lithography," J. Vac. Sci. Technol. B 15, 2439-2443 (1997).
[CrossRef]

1996 (1)

D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134-7142 (1996).
[CrossRef]

1991 (1)

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, "Two-dimensional photonic band structures," Opt. Commun. 80, 199-204 (1991).
[CrossRef]

1976 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005).
[CrossRef]

A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, "Direct fabrication of two-dimensional titania arrays using interference photolithography," Appl. Phys. Lett. 79, 3332-3334 (2001).
[CrossRef]

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, "Diffraction element assisted lithography: Pattern control for photonic crystal fabrication," Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

J. Microlithogr. Microfabri. and Microsyst. (1)

C. J. M. van Rijn, "Laser interference as a lithographic nanopatterning tool," J. Microlithogr. Microfabri. and Microsyst. 5, 011012 (2006).

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (3)

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, "Methods for fabricating arrays of holes using interference lithography," J. Vac. Sci. Technol. B 15, 2439-2443 (1997).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnetic arrays using interference lithography and a negative resist," J. Vac. Sci. Technol. B 17, 3182-3189 (1999).
[CrossRef]

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Commun. (4)

X. L. Yang and L. Z. Cai, "Wave design of the interference of three noncoplanar beams for microfiber fabrication," Opt. Commun. 208, 293-297 (2002).
[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, "Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices," Opt. Commun. 218, 325-332 (2003).
[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, "Two-dimensional photonic band structures," Opt. Commun. 80, 199-204 (1991).
[CrossRef]

L. Z. Cai and X. L. Yang, "Observation of fractional Fourier transforms of continuously variable orders with a scale invariant input," Opt. Commun. 201, 319-323 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134-7142 (1996).
[CrossRef]

Proc. IEEE (1)

S. R. J. Brueck, "Optical and interferometric lithography-nanotechnology enablers," Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

Pure Appl. Opt. (1)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," Pure Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Lights (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Schematic of the experimental arrangement used for phase-controlled, three-beam noncoplanar interference lithography, IL. A is the attenuator, S is the sample, HWP is the half-wave plate, P is the polarizer, BS is the beam splitter, and B-SC is the Babinet–Soleil compensator.

Fig. 2
Fig. 2

(a) SEM image of a pattern formed in a SU-8 photoresist when all three beams used for IL had the same phase, ( ϕ 1 , ϕ 2 , ϕ 3 ) = ( 0 , 0 , 0 ) . The marker indicates a 3 μ m scale, (b) SEM image of a pattern formed in a SU-8 photoresist when the phase of the third beam was π∕2 different from the other two, ( ϕ 1 , ϕ 2 , ϕ 3 ) = ( 0 , 0 , π / 2 ) . The bar marker indicates a 3 μ m scale.

Fig. 3
Fig. 3

(a) Vectors that show the interaction of three waves in two-dimensional reciprocal space; (b) schematic pattern when the three waves have the same phase, ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , 0 ) ; (c) schematic pattern when ( φ 1 , φ 2 , φ 3 ) = ( π / 2 , 0 , 0 ) .

Fig. 4
Fig. 4

Simulated two-dimensional color maps of the intensity distribution expected for three-beam noncoplanar interference with different relative phases. (a) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , 0 ) , (b) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 6 ) , (c) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 3 ) , (d) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 2 ) . The normalized color bar indicates regions of lowest light intensity ( 0.0 ) to highest light intensity ( 1.0 ) . The image has an edge length of 10 μ m .

Fig. 5
Fig. 5

SEM images of patterns created by three-beam noncoplanar interference with different relative phases. (a) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , 0 ) , (b) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 6 ) , (c) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 3 ) , (d) ( φ 1 , φ 2 , φ 3 ) = ( 0 , 0 , π / 2 ) . The samples were coated with gold because of the low electron conductivity of the polymer. The bar on the lower right SEM image corresponds to 3 μ m .

Fig. 6
Fig. 6

(a) SEM image of the holes array at the scale 3 μ m , (b) SEM image of the holes array sample at the 30 μ m scale, (c) a digital photograph of the patterned polymer film on the cm scale. The color is due to Bragg diffraction.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

k 1 = 2 π λ [ 0 , sin   θ , cos   θ ] ,
k 2 = 2 π λ [ 3 2  sin   θ ,  1 2  sin   θ , cos   θ ] ,
k 3 = 2 π λ [ 3 2  sin   θ ,  1 2  sin   θ , cos   θ ] .
E j = E j e ^ j   exp [ i ( k j · r ω t + φ j ) ] , j = 1 , 2 , 3 ,
I = i E i 2 + 2 i < j E i j 2   cos [ K i j · r + φ i j ] , i , j = 1 , 2 , 3 ,
V = I max I min I max + I min ,
K 12 · r + φ 12 = 2 p π , p = 0 , 1 , 2 , 3 , ,
K 23 · r + φ 23 = 2 p π , p = 0 , 1 , 2 , 3 , ,
K 31 · r + φ 31 = 2 p π , p = 0 , 1 , 2 , 3 , ,

Metrics